

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

PRIORITIZING VULNERABILITY RESPONSE: A
STAKEHOLDER-SPECIFIC VULNERABILITY
CATEGORIZATION (VERSION 1.1)
Jonathan M Spring, Eric Hatleback, Allen Householder, Art Manion, & Deana Shick†
Workshop on the Economics of Information Security; December 2020

1 Introduction

Many organizations use the Common Vulnerability Scoring System (CVSS) to prioritize actions dur-
ing vulnerability management. This paper builds on prior work about prioritizing actions during vul-
nerability management by presenting a testable Stakeholder-Specific Vulnerability Categorization
(SSVC) that avoids some problems with CVSS. SSVC takes the form of decision trees for different
vulnerability management communities. We welcome others to test and improve it.

This paper proposes a functional system to make our proposal concrete as well as preliminary tests of
its usefulness. However, our proposal is a detailed hypothesis to test or a conversation starter; it is not
a final proposal. The stakeholders in vulnerability management are diverse, and that diversity must be
accommodated in the main functionality, rather than squeezed into hard-to-use optional features.
Given this, as much as it is practical, we aim to avoid one-size-fits-all solutions.

We will improve vulnerability management by framing decisions better. The modeling framework de-
termines what output types are possible, identifies the inputs, determines the aspects of vulnerability
management that are in scope, defines the aspects of context that are incorporated, describes how the
model handles context and different roles, and determines what those roles should be. As such, the
modeling framework is important but difficult to pin down. We approach this problem as a satisficing
process. We do not seek optimal formalisms, but an adequate formalism. Others may have different
satisfactory models, and that is okay.

The organizing concept of our decision-making procedure is decision trees. A decision tree represents
important elements of a decision, possible decision values, and possible outcomes. We suggest deci-
sion trees as an adequate formalism for practical, widespread advice about vulnerability prioritization.
We do not claim this approach is the only viable option. We also suggest that specific vulnerability
management stakeholder communities use decision trees. These suggestions are hypotheses for viable
replacements for CVSS in those communities, but the hypotheses require empirical testing before they
can be justifiably considered fit for use. We propose a methodology for such testing.

† The authors thank the following people for helpful comments on prior drafts: Will Dormann, Madison Oliver, Vijay

Sarvepalli, and Laurie Tyzenhaus (CERT/CC); Michel van Eeten and the anonymous WEIS reviewers; attendees at
A Conference on Defense (ACoD), Austin TX 2020; Dale Peterson, Ralph Langer, and attendees at S4, Miami FL
2020; Muhammad Akbar and Manish Gaur (VMWare); David Oxley (McAfee).

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

The rest of the paper is organized as follows. Section 2 summarizes the current state of vulnerability
management. Section 3 describes our design goals for an improved prioritization method. Section 4
proposes a definition of decision points and decision trees as a prioritization method. Section 5 de-
scribes an early test of this method against the design goals, as much to show an adequate usability
test methodology as for the results. Section 6 provides examples of applying the methodology of Sec-
tion 4 to sample vulnerabilities. Section 7 identifies future work. Section 8 identifies limitations in the
design. Section 9 concludes with some final thoughts.

2 Current state of practice

Vulnerability management is a term of art for security practitioners, used to include “the discovery,
analysis, and handling of new or reported security vulnerabilities in information systems [and] the de-
tection of and response to known vulnerabilities in order to prevent them from being exploited.”1 Pri-
oritization of organizational and analyst resources is an important precursor to vulnerability analysis,
handling, and response. The general problem is: given limited resources, which vulnerabilities should
be processed and which can be ignored for now. We approach this problem from a pragmatic, practi-
tioner-centered angle.

The de facto standard prioritization language is CVSS.2 CVSS avoids discussing decisions and, in-
stead, takes technical severity as its fundamental concept. We understand severity’s role as informing
decision making about vulnerability management. The CVSS standard indicates vulnerability manage-
ment decisions, and only those decisions, as what they expect CVSS scores to inform,3 yet the stand-
ard does not provide clear advice about how CVSS scores might inform decisions.

How CVSS is used matters. Using just the base scores as a stand-alone prioritization method is not
recommended.4 However, as two examples, the U.S. government5 and the global payment card indus-
try6 both have defined such misuse as expected practice in their vulnerability management require-
ments. CVSS has struggled to adapt to other stakeholder contexts; various stakeholder groups have

1 Vilius Benetis, Olivier Caleff, Cristine Hoepers, Angela Horneman, Allen Householder, Klaus-Peter Kossakowski, Art

Manion, Amanda Mullens, Samuel Perl, Daniel Roethlisberger, Sigitas Rokas, Mary Rossell, Robin M. Ruefle,
D’esir’ee Sacher, Krassimir T. Tzvetanov, and Mark Zajicek. Computer security incident response team (CSIRT) ser-
vices framework. Technical Report ver. 2.1, FIRST, Cary, NC, USA, July 2019.

2 Spring, Jonathan. M., and Phyllis Illari. Review of human decision-making during computer security incident analysis.
2019. arXiv:1903.10080.

3 “CVSS provides a way to capture the principal characteristics of a vulnerability … reflecting its severity … to help organi-
zations properly assess and prioritize their vulnerability management processes.” See “Common Vulnerability Scor-
ing System SIG” (https://www.first.org/cvss).

4 The base score is defined as “the intrinsic characteristics of a vulnerability that are constant over time and across user
environments.” FIRST. Common Vulnerability Scoring System version 3.1: Specification Document.

5 Suggested for use by federal civilian departments and agencies via NIST guidance (e.g., SP 800-115, p. 7-4 and SP
800-40r3 pg. 4) and the DHS directive on Critical Vulnerability Mitigation (https://cyber.dhs.gov/bod/15-01/).

6 Via PCI DSS, see: https://www.pcisecuritystandards.org/documents/ASV_Program_Guide_v3.0.pdf

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

expressed dissatisfaction by making new versions of CVSS, such as medical devices,7 robotics,8 and
industrial systems.9 In these three examples, the modifications tend to add complexity to CVSS by
adding metrics. Product vendors have varying degrees of adaptation of CVSS for development priori-
tization.10 The vendors codify CVSS’s recommended qualitative severity rankings in different ways,
and Red Hat and Microsoft make the user interaction base metric more important. The various stake-
holder re-adaptations of CVSS suggest a stakeholder-specific prioritization is important.

Unfortunately, all such re-adaptation of the basic CVSS mindset inherit its deeper issues. For example,
the CVSS scoring algorithm has not been argued for transparently, and the standardization group has
not justified the use of the formula either formally or empirically.11 In addition, severity should only
be a part of vulnerability response prioritization.12 One complaint is that a high CVSS score is not pre-
dictive of which vulnerabilities will be commonly exploited or have exploits publicly released.13 Stud-
ies of CVSS scoring consistency indicate that analysts do not consistently interpret the elements of a
CVSSv3.0 score,14 and as many adaptations of CVSS simply add additional metrics we expect they
inherit such inconsistency. Analyst usability has so far been an afterthought, but we know from other
areas of information security that usability is not well-served as an afterthought.15

Surveys of security metrics16 and information sharing in cybersecurity17 do not indicate any major ef-
forts to conduct a wholesale rethinking of vulnerability prioritization. The surveys indicate some op-
tions for available measurements a prioritization method might consider, such as exploit availability or
system attack surface. Section 3 describes our design goals for a pragmatic prioritization methodology
that can improve and build on the state of current practice.

7 Chase, Penny and Stevey Christey Coley. Rubric for Applying CVSS to Medical Devices. MITRE and the FDA. 2019.
8 Vilches, Víctor Mayoral, Endika Gil-Uriarte, Irati Zamalloa Ugarte, Gorka Olalde Mendia, Rodrigo Izquierdo Pisón, Laura

Alzola Kirschgens, Asier Bilbao Calvo, Alejandro Hernández Cordero, Lucas Apa, and César Cerrudo. Towards an
open standard for assessing the severity of robot security vulnerabilities, the Robot Vulnerability Scoring System
(RVSS). arXiv:1807.10357 (2018).

9 Santiago Figueroa-Lorenzo, Javier Añorga, and Saioa Arrizabalaga. A survey of IIoT protocols: A measure of vulnerabil-
ity risk analysis based on cvss. ACM Comput. Surv., 53(2), April 2020.

10 These include, but are not limited to :Red Hat (https://access.redhat.com/security/updates/classification), Microsoft
(https://www.microsoft.com/en-us/msrc/security-update-severity-rating-system), and Cisco
(https://tools.cisco.com/security/center/resources/security_vulnerability_policy.html#asr).

11 Spring, Jonathan M., Eric Hatleback, Allen Householder, Art Manion, Deana Shick. Towards Improving CVSS. Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA. 2018. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=538368.

12 For example: Farris KA, Shah A, Cybenko G, Ganesan R, Jajodia S. VULCON: A System for Vulnerability Prioritization,
Mitigation, and Management. ACM Transactions on Privacy and Security (TOPS). 2018 Jun 12; 21(4):16.

13 Allodi, Luca and Fabio Massacci. A Preliminary Analysis of Vulnerability Scores for Attacks in Wild: The EKITS and
SYM Datasets. BADGERS’12, Oct 5, 2012, Raleigh, North Carolina, USA.

14 Allodi L.; Cremonini M.; Massacci F.; & Shim W. The Effect of Security Education and Expertise on Security Assess-
ments: The Case of Software Vulnerabilities. In WEIS 2018

15 Garfinkel, Simson, and Heather Richter Lipford. Usable security: History, themes, and challenges. Morgan & Claypool
Publishers, 2014.

16 Pendleton, Marcus, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. A survey on systems security metrics.
ACM Comput. Surv., 49(4), December 2016.

17 Stefan Laube and Rainer Böhme. Strategic aspects of cyber risk information sharing. ACM Comput. Surv., 50(5), No-
vember 2017.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

3 Representing Information for Decisions About Vulnerabilities

We chose to build our model with decisions as the central concept. We propose that decisions—rather
than severity—are a more useful output. Our design requirements for an adequate decision-making
process is that it clearly define whose decisions are involved, properly use evidentiary categories, be
based on reliably available evidence, be transparent, and be explainable. Our inspiration and justifica-
tion for these design goals is that they are the features of a satisfactory scientific enterprise18 adapted
to this vulnerability management problem.

To consider decisions about managing the vulnerability rather than just technical severity, one must be
clear about whose decisions are involved. Organizations that produce patches and fix software clearly
have different decisions to make than those that deploy patches or other security mitigations. Further-
more, organizations in the aviation industry have different priorities than organizations that make
word processors. These differences indicate a requirement: any formalism must be able to capture ade-
quately the different decisions and priorities exhibited by different stakeholder groups. And as a usa-
bility requirement, the number of stakeholder groups needs to be small enough to be manageable, both
by those issuing scores and those seeking them.

The goal of adequacy is more appropriate than optimality. Our search process need not be exhaustive;
we are satisficing rather than optimizing.19 Satisficing is more appropriate to qualitative criteria; we do
not need to order different methods as to which are more transparent than others, for example. Finding
any system that meets all of desired criteria is enough.

Decisions are not numbers. Decisions are qualitative actions that an organization can take. In many
cases, numerical values can be directly converted to qualitative decisions. For example, if your child’s
temperature is 105°F (40.5°C), you decide to go to the hospital. Conversion from numerical to qualita-
tive values can be complicated by measurement uncertainty and the design of the metrics. For exam-
ple, CVSS scores were designed to be accurate with +/- 0.5 points of the given score.20 If we take the
recommended dividing line between high and critical—9.0—then it is unclear how to convert a
CVSSv3.0 score of 8.9.

For example, under a Gaussian error distribution, 8.9 is really 60% high and 40% critical. We want
decisions to be distinct and crisp; statistical overlaps of scores within 1.0 unit, for example, would
muddy decision recommendations.

We avoid numerical representations and consider only qualitative data as inputs and outputs for any
vulnerability management decision process. Quantified metrics are more useful when (1) data for de-
cision making is available, and (2) the stakeholders agree on how to measure. Vulnerability manage-
ment does not yet meet either criterion. Furthermore, it is not clear to what extent measurements about

18 Jonathan M Spring, Tyler Moore, and David Pym. 2017. Practicing a Science of Security: A philosophy of science per-

spective. In New Security Paradigms Workshop. Santa Cruz, CA, USA.
19 Simon, Herbert A. The sciences of the artificial. 3rd ed. MIT press, 1996.
20 Common Vulnerability Scoring System v3.1: Specification Document. 2019. See Section 7.5.

https://www.first.org/cvss/v3.1/specification-document

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

a vulnerability can be informative about other vulnerabilities. Each vulnerability has a potentially
unique relationship to the socio-technical system in which it exists, including the internet. The context
of the vulnerability, and the systems it impacts, are inextricably linked to managing it. Temporal and
environmental considerations should be primary, not optional as they are in CVSS.

We make the deliberation process as clear as practical; therefore, we risk belaboring some points to
ensure our assumptions and reasoning are explicit. Transparency should improve trust in the results.

Finally, any result of a decision-making process should be explainable. (Explainable is defined and
used with its common meaning. This meaning is not the same as “explainable,” as used in the research
area of explainable artificial intelligence.) An explanation should make the process intelligible to an
interested, competent, non-expert person. There are at least two reasons common explainability is im-
portant: (1) for troubleshooting and error correction and (2) for justifying proposed decisions.

To summarize, the following are our design goals for a vulnerability management process:
• Outputs are decisions.
• Pluralistic recommendations are made among a manageable number of stakeholder groups.
• Inputs are qualitative.
• Outputs are qualitative, and there are no (unjustified) shifts to quantitative calculations.
• Process justification is transparent.
• The results are explainable.

3.1 Formalization Options

This section briefly surveys the available formalization options against the six requirements described
above. Table 1 summarizes the results. This survey is opportunistic, and is based on conversations
with several experts and our professional experience. The search process leaves open the possibility of
missing a better option. However, at the moment, we are searching for a satisfactory formalism, rather
than an optimal one. We need to search only until a satisfactory option is found. Thus, we focus on
highlighting why some common options or suggestions do not meet the above criteria. We argue that
decision trees are a satisfactory formalism.

We rule out many quantitative options, such as anything involving statistical regression techniques or
Bayesian belief propagation. Most machine learning (ML) algorithms are also not suitable because
they are both unexplainable (in our sense) and quantitative. Random forest algorithms may appear in
scope since each individual decision tree can be traced and the decisions explained.21 However, it’s
not transparent enough to simply know how the available decision trees are created or mutated and
why a certain set of them works better. In any case, random forests are necessary only when decision
trees get too complicated for humans to manage. We demonstrate below that in vulnerability manage-
ment, useful decision trees are small enough for humans to manage.

21 Russell, Stuart J. & Norvig, Peter. Artificial Intelligence: A Modern Approach, 3rd Edition. Prentice Hall. 2010. ISBN

9780136042594.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Logics are generally better suited for capturing qualitative decisions. Boolean first-order logic is the
“usual” logic—with material implication (if/then), negation, existential quantification, and predicates.
For example, in program verification, satisfiability problem (SAT) and satisfiability modulo theories
(SMT) solvers are used to automate decisions about when some condition holds or whether software
contains a certain kind of flaw. However, while the explanations provided by logical tools are accessi-
ble to experts, non-experts may struggle. However, under special conditions, logical formulae repre-
senting decisions about categorization based on exclusive-or conditions can be more compactly and
intelligibly represented as a decision tree.

Decision trees are used differently in operations research than in ML. In ML, decision trees are used
as a predictive model to classify a target variable based on dependent variables. In operations research
and decision analysis, a decision tree is a tool used to document a human process. In decision analysis
“decision analysts frequently use specialized tools, such as decision tree techniques, to evaluate uncer-
tain situations. Unfortunately, many people, some of them educators, have confused decision analysis
with decision trees. This is like confusing surgery with the scalpel.”22 We use decision trees in the tra-
dition of decision analysis, not ML.

Table 1: Comparison of Formalization Options for Vulnerability Prioritization Decisions

Outputs Designed

to be Decisions
Pluralistic

Recommendations
Qualitative

Inputs
Qualitative

Outputs
Transparent Explainable

Parametric
Regression û û ü û û ü

CVSS v3.0 û û ü û û û

Bayesian Belief
Networks û Maybe û û ü ü

Neural Networks û û û û û û

Random Forest ü ü ü Maybe û Maybe

Other Machine
Learning û Maybe û û û û

Boolean First Order
Logics Maybe Maybe ü ü ü Maybe

Decision Trees (as in
decision analysis) ü ü ü ü ü ü

22 Howard, Ronald A and James E Matheson, eds. Readings on the Principles and Applications of Decision Analysis.

Strategic Decisions Group. 1983. Pg viii.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

3.2 Decision Trees

A decision tree is an acyclic, flowchart-like structure where nodes represent aspects of the decision or
relevant properties, and branches represent possible options for each aspect or property. Each decision
point can have more than two options and may have different options from other decision points.

Decision trees can be used to meet all of the desired criteria described above. The two less-obvious
criteria met by decision trees are plural recommendations and transparent tree-construction processes.
Decision trees support plural recommendations simply because a separate tree can represent each
stakeholder group. The opportunity for transparency surfaces immediately: any deviation among the
decision trees for different stakeholder groups should have a documented reason—supported by public
evidence when possible—for the deviation. Transparency may be difficult to achieve, since each node
in the tree and each of the values need to be explained and justified, but this cost is paid infrequently.

There has been limited but positive use of decision trees in vulnerability management. For example,
Vulnerability Response Decision Assistance (VRDA) studies how to make decisions about how to re-
spond to vulnerability reports.23 This paper continues roughly in the vein of such work to construct
multiple decision trees for prioritization within the vulnerability management process.

4 Decision Trees for Vulnerability Management

Viable decision guidance for vulnerability management should, at a minimum, consider the stake-
holder groups, their potential decision outcomes, and the data needed for relevant decision points. The
following sections address each of these parts, in turn, and should be taken as instructive examples.
While we strive to make the examples realistic, we invite the community to engage and conduct em-
pirical assessments to test examples. The following construction should be treated as an informed hy-
pothesis rather than a conclusion.

4.1 Enumerating Stakeholders

Stakeholders in vulnerability management can be identified within multiple independent axes. For ex-
ample, they can be identified by their responsibility: whether the organization develops, applies, or
coordinates patches. Organizations may also be distinguished by type of industry sector. While it
might be useful to enumerate all the sectors of the economy, we propose to draft decision points that
include those from multiple important sectors. For example, we have safety-related questions in the
decision path for all developers and appliers, so whether or not the stakeholder is in a safety-critical
sector, the decision will be addressed.

The choice not to segregate the decisions by sector is reinforced by the fact that any given software
system might be used by different sectors. It is less likely that one organization has multiple

23 Burch H.; Manion A.; & Ito Y. Vulnerability Response Decision Assistance (VRDA). Software Engineering Institute, Car-

negie Mellon University. June 2007. https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=51036

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

responsibilities within the vulnerability management process. Even if there is overlap within an organ-
ization, the two responsibilities are often located in distinct business units with distinct decision-mak-
ing processes. We can treat the responsibilities as non-overlapping, and, therefore, we can build two
decision trees—one for each of the “patch development” and “patch deployment” responsibilities in
the vulnerability management process. We leave “coordinating patches” as future work. Each of these
trees will have different decision points that they take to arrive at a decision about a given unit of
work.

The next two sections describe the decision space and the relevant decision points that we propose for
these two responsibilities within the vulnerability management process.

The paper’s target audience is professional staff responsible for making decisions about information
systems. This audience includes a broad class of professionals, and includes developers, system main-
tainers, and administrators of many types. It also includes other roles, such as risk managers, technical
managers, and incident responders. Although every layperson who owns a computing device makes
decisions about managing it, this is not the target audience. The following decision system may help
such laypeople, but we do not intend it to be used by that audience.

Relatedly, C-level executives and public policy professionals often make, shape, or incentivize deci-
sions about managing information systems; however, this is not the target audience either. To the ex-
tent that decision trees for vulnerability management help higher level policy decisions, we believe the
best way to help policy makers is by making the technical decisions more transparent and explainable
to policy makers. While policy makers may see indirect benefit, they are not the primary target, and
we are not designing an approach for them directly.

4.2 Enumerating Decisions

Stakeholders with different responsibilities in vulnerability management have largely different deci-
sions to make. This section focuses on the differences among organizations based on their vulnerabil-
ity management responsibilities. Some decision makers may have different responsibilities in relation
to different software. For example, an Android app developer is a developer of the app, but is a patch
applier for any changes to the Android OS API. This situation is true for libraries in general. A web
browser developer makes decisions about applying patches to DNS lookup libraries and transport
layer security (TLS) libraries. A video game developer makes decisions about applying patches re-
leased to the Unreal Engine. A medical device developer makes decisions about applying patches to
the Linux kernel. The list goes on. Alternatively, one might view applying patches as, de facto, includ-
ing some development and distribution of the updated product. Or one might take the converse view,
that development, de facto, includes updating libraries. Either way, in each of these examples (mobile
device apps, web browsers, video games, medical devices), we recommend that the professionals
making genuine decisions do three things: (1) identify the decisions explicitly, (2) describe how they
view their role(s), and (3) identify which software projects their decision relates to. If their decisions
are explicit, then the decision makers can use the recommendations from this document that are rele-
vant to them.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Developing Patches. At a basic level, the decision at a software development organization is whether
to issue a work order and what resources to expend to fix a vulnerability in the organization’s soft-
ware. Prioritization is required because, at least in the current history of software engineering, the ef-
fort to patch all known vulnerabilities will exceed available resources. The organization considers sev-
eral other factors to build the patch; refactoring a large portion of the code base may be necessary for
some patches, while others require relatively small changes. We focus only on the priority of building
the patch, and we consider four categories of priority, as outlined in Table 2.

Table 2: Proposed Meaning for Developer Priority Outcomes

Developer Priority Description

Defer Do not work on the patch at present.

Scheduled Develop a fix within regularly scheduled maintenance using developer resources as normal.

Out-of-Band Develop a fix out-of-band, taking resources away from other projects and releasing the fix as a
security patch when it is ready.

Immediate Develop and release a fix as quickly as possible, drawing on all available resources, potentially
including drawing on or coordinating resources from other parts of the organization.

Applying Patches. Whether or not to apply an available patch is a binary decision. However, addi-
tional defensive mitigations may be necessary sooner than patches are available and may be advisable
after patches are applied. We recognize that vulnerability management actions are different when a
patch is available and when it is not available.

When a patch is available, usually the action is to apply it. When a patch it not yet available, the action
space is more diverse, but it should involve mitigating the vulnerability (e.g., shutting down services
or applying additional security controls) or accepting the risk of not mitigating the vulnerability.

In this paper, we model the decision of “With what priority should the organization take action on a
given vulnerability management work unit?” to be agnostic to whether or not a patch is available. A
unit of work means either applying a patch or deploying a mitigation. Both patches and mitigations
often remediate multiple identified vulnerabilities. The patch applier should answer the suggested
questions for whatever unit of work they are considering as a whole, single unit. There is not neces-
sarily a reliable function to aggregate a recommendation about a patch out of its constituent vulnera-
bilities. For the sake of simplicity of examples, we treat a patch as a patch of one vulnerability, and
comment on any difficulty in generalizing our advice to a more complex patch where appropriate. Ta-
ble 3 displays the action priorities for the patch applier, which are similar to the patch developer case.

Table 3: Proposed Meaning for Applier Priority Outcomes

Applier Priority Description

Defer Do not act at present.

Scheduled Act during regularly scheduled maintenance time.

Out-of-Band Act more quickly than usual to apply the fix out-of-band, during the next available oppor-
tunity, working overtime if necessary.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Immediate Act immediately; focus all resources on applying the fix as quickly as possible, including, if
necessary, pausing regular organization operations.

Coordinating Patches. In coordinated vulnerability disclosure (CVD), the available decision is
whether or not to coordinate a vulnerability report. VRDA provides a starting point for a decision tree
for this situation.23 VRDA is likely adequate for national-level CSIRTs that do general CVD, but other
CSIRT types may have different needs. Future work may elicit those types and make a few different
decision options. Specialized coordination organizations exist (e.g., ICS-CERT, which conducts CVD
for safety-critical systems). We have not developed a coordination tree in this work, but future work
could use our principles and design techniques to refine and evaluate VRDA or some other decision
tree for coordinated vulnerability disclosure. The CERT guide to CVD provides something similar for
those deciding how to report and disclose vulnerabilities they have discovered.24

Within each setting, the decisions are a kind of equivalence class for priority. That is, if an organiza-
tion must deploy patches for three vulnerabilities, and if these vulnerabilities are all assigned the
“scheduled” priority, then the organization can decide which to deploy first. The priority is equivalent.
This approach may feel uncomfortable since CVSS gives the appearance of a finer grained priority.
CVSS appears to say, “Not just 4.0 to 6.9 is ‘medium’ severity, but 4.6 is more severe than 4.5.” How-
ever, as discussed previously (see page 4), CVSS is designed to be accurate only within +/- 0.5, and,
in practice, is scored with errors of around +/- 1.5 to 2.5.25 An error of this magnitude is enough to
make all of the “normal” range from 4.0 to 6.9 equivalent, because 5.5 +/- 1.5 is the range 4.0 to 7.0.
Our proposal is an improvement over this approach. CVSS errors often cross decision boundaries; in
other words, the error range often includes the transition between “high” and “critical” or “medium.”
Since our approach keeps the decisions qualitatively defined, this fuzziness does not affect the results.

Returning to the example of an organization with three vulnerabilities to patch that were assigned
“scheduled” priority, in SSVC, they can be patched in any order. This is an improvement over CVSS,
since based on the scoring errors, CVSS was essentially just giving random fine-grained priorities
within qualitative categories anyway. With our system, organizations can be more deliberate about
conveniently organizing work that is of equivalent priority.

4.3 Scope
One important variable in the answers to all the below decision points is scope. There are at least two
aspects to scope. One is how the boundaries of the affected system are set. A second is how far for-
ward in time or causal steps one reasons about effects and harms. We put forward recommendations
for both of these. However, users of the decision process may want to define different scopes. Users
may define a different scope as long as the scope is consistent across decisions, and are plausible, ex-
plicit, and accessible to all relevant decision makers.

24 Allen D. Householder; Garret Wassermann; Art Manion; & Chris King. The CERT® Guide to Coordinated Vulnerability

Disclosure. Section 6.10, https://vuls.cert.org/confluence/dis-
play/CVD/6.10+Troubleshooting+Coordinated+Vulnerability+Disclosure+Table

25 Allodi L.; Cremonini M.; Massacci F.; & Shim W. The Effect of Security Education and Expertise on Security Assess-
ments: The Case of Software Vulnerabilities. In WEIS 2018, Figure 1. The more accurate half of professionals esti-
mated CVSS scores in ranges such as [+2,0] (i.e., between overestimating by 2 to being correct), [+2,-2], and [0,-2].

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4.3.1.1 Boundaries of the Affected System
One distinction is whether the system of interest is software per se or a cyber-physical system. One
problem is that in every practical case, both are involved. Software is what has vulnerabilities and is
what vulnerability management is focused on patching. Multiple pieces of software run on any given
computer system. To consider software vulnerabilities in a useful scope, we follow prior work and
propose that a vulnerability affects “the set of software instructions that executes in an environment
with a coherent function and set of permissions.”26 This definition is useful because it lets us keep to
common usage and intuition and call the Linux kernel—at least a specific version of it—“one piece”
of software. But decision points about safety and mission impact are not about the software per se;
they are about the cyber-physical system, of which the software is a part. The term physical in cyber-
physical system should be interpreted broadly; selling stocks or manipulating press outlet content are
both best understood as affecting human social institutions. These social institutions do not have much
of a corporeal instantiation, but they are physical in the sense that they are not merely software, and so
are parts of cyber-physical systems.

The hard part of delineating the boundaries of the affected system is specifying what it means for one
system to be a part of another. Just because a computer is bolted to a wall does not mean the computer
is part of the wall’s purpose, which is separating physical space. At the same time, an off-premises
DNS server may be part of the site security assurance system if the on-premises security cameras rely
on the DNS server to connect to the displays at the guard’s desk. We define computer software as part
of a cyber-physical system if the two systems are mutually manipulable; that is, changes in the part
(the software) will (at least, often) make detectable and relevant changes to the whole (the cyber-phys-
ical system), and changes in the whole will (often) make relevant and detectable changes in the part.27

When reasoning about a vulnerability, we assign the vulnerability to the nearest, relevant—yet more
abstract—discrete component. This assignment is particularly important when assessing technical im-
pact on a component. This description bears some clarification, via each of the adjectives:
• Nearest is relative to the abstraction at which the vulnerability exists.
• Relevant implies that the impacted component must be in the chain of abstraction moving upward

from the location of the flaw.
• More abstract means it’s at least one level of abstraction above the specific location of the vulner-

ability. For example, if the vulnerability is localized to a single line of code in a function, then the
function, the module, the library, the application, the product, and the system it belongs to are all
more abstract.

• Discrete means there is an identifiable thing that can be fixed (e.g., the unit of patching).

Products, libraries, and applications tend to be appropriate objects of focus when seeking the right
level to analyze the impact of a vulnerability. Hence, when reasoning about the technical impact of a
vulnerability localized to a function in a module in an open source library, the nearest relevant discrete

26 Spring J.; Kern S.; & Summers A. Global adversarial capability modeling. APWG Symposium on Electronic Crime Re-

search (eCrime). May 2015. IEEE.
27 Spring J.M. & Illari P. Building general knowledge of mechanisms in information security. Philosophy & Technology. 32,

627–659. 2018.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

abstraction is the library because the patches are made available at the library level. Similarly, analysis
of a vulnerability in closed source database software that supports an enterprise resource management
(ERM) system would consider the technical impact to the database, not to the ERM system.

4.3.1.2 Reasoning Steps Forward
This aspect of scope is about immediacy, prevalence, and causal importance. Immediacy is about how
soon after the decision point adverse effects should occur to be considered relevant. Prevalence is
about how common adverse effects should be to be considered relevant. Causal importance is about
how much an exploitation of the software in the cyber-physical system contributes to adverse effects
to be considered relevant. Our recommendation is to walk a pragmatic middle path on all three as-
pects. Effects are not relevant if they are merely possible, too infrequent, far distant, or unchanged by
the vulnerability. But effects are relevant long before they are absolutely certain, ubiquitous, or occur-
ring presently. Overall, we summarize this aspect of scope as consider plausible effects based on
known use cases of the software system as a part of cyber-physical systems.

4.4 Likely Decision Points and Relevant Data

We propose the following decision points and associated values should be a factor when making deci-
sions about vulnerability prioritization. Each decision point is tagged with the stakeholder it is relevant
to: patch appliers, patch developers, or both. We emphasize that these descriptions are hypotheses to
be further tested and validated. We made every effort to put forward informed and useful decision
frameworks with wide applicability, but the goal of this paper is more to solicit feedback than make a
declaration. We welcome questions, constructive criticism, refuting evidence, or supporting evidence
about any aspect of this proposal.

One important omission from the values for each category is an “unknown” option. Instead, we rec-
ommend explicitly identifying an option that is a reasonable assumption based on prior events. Such
an option requires reliable historical evidence for what tends to be the case; of course, future events
may require changes to these assumptions over time. Therefore, our assumptions require evidence and
are open to debate in light of new evidence. Different risk tolerance or risk discounting postures are
not addressed in the current work; accommodating such tolerance or discounting explicitly is an area
for future work. This flexibility fits into our overall goal of supplying a decision-making framework
that is both transparent and fits the needs of different communities. Resisting an “unknown” option
discourages the modeler from silently embedding these assumptions in their choices for how the deci-
sion tree flows below the selection of any “unknown” option.

We propose satisfactory decision points for vulnerability management in the next sections, in no par-
ticular order.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4.4.1 Exploitation (Developer, Applier)

Evidence of Active Exploitation of a Vulnerability
The intent of this measure is the present state of exploitation of the vulnerability. The intent is not to
predict future exploitation but only to acknowledge the current state of affairs. Predictive systems,
such as EPSS, could be used to augment this decision or to notify stakeholders of likely changes.28

Table 4: Exploitation Decision Values

None There is no evidence of active exploitation and no public proof of concept (PoC) of how to ex-
ploit the vulnerability.

PoC
(Proof of Concept)

One of the following cases is true: (1) exploit code sold or traded on underground or restricted
fora; (2) typical public PoC in places such as Metasploit or ExploitDB; or (3) the vulnerability
has a well-known method of exploitation. Some examples of condition (3) are open-source
web proxies serve as the PoC code for how to exploit any vulnerability in the vein of improper
validation of TLS certificates. As another example, Wireshark serves as a PoC for packet re-
play attacks on ethernet or WiFi networks.

Active Shared, observable, reliable evidence that the exploit is being used in the wild by real attack-
ers; there is credible public reporting.

4.4.2 Technical Impact (Developer)

Technical Impact of Exploiting the Vulnerability

When evaluating technical impact, recall the scope definition above. Total control is relative to the
affected component where the vulnerability resides. If a vulnerability discloses authentication or au-
thorization credentials to the system, this information disclosure should also be scored as “total” if
those credentials give an adversary total control of the component.

Table 5: Technical Impact Decision Values

Partial The exploit gives the adversary limited control over, or information exposure about, the behav-
ior of the software that contains the vulnerability. Or the exploit gives the adversary an im-
portantly low stochastic opportunity for total control. In this context, “low” means that the at-
tacker cannot reasonably make enough attempts to overcome the low chance of each attempt
not working. Denial of service is a form of limited control over the behavior of the vulnerable
component.

Total The exploit gives the adversary total control over the behavior of the software, or it gives total
disclosure of all information on the system that contains the vulnerability

4.4.3 Utility (Developer, Applier29)

The Usefulness of the Exploit to the Adversary
Heuristically, we base utility on a combination of value density of vulnerable components and viru-
lence of potential exploitation. This framing makes it easier to analytically derive these categories

28 Jay Jacobs; Sasha Romanosky; Idris Adjerid; & Wade Baker. Improving Vulnerability Remediation Through Better Ex-

ploit Prediction. WEIS. Boston, MA. June 2019.
29 Appliers use this feature only as a suggested constraint on the values for mission impact.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

from a description of the vulnerability and the affected component. Virulence (slow or rapid) and
value density (diffuse or concentrated) are defined in Sections 4.4.3.1 and 4.4.3.2.

Roughly, utility is a combination of two things: (1) the value of each exploitation event and (2) the
ease and speed with which the adversary can cause exploitation events. We define utility as laborious,
efficient, or super effective, as described in Table 6.

Table 6: Utility Decision Values

Laborious Slow virulence and diffuse value

Efficient {Rapid virulence and diffuse value} OR {Slow virulence and concentrated value}

Super Effective Rapid virulence and concentrated value

4.4.3.1 Virulence
Virulence is described as slow or rapid:
• Slow. Steps 1-4 of the kill chain30 cannot be reliably automated for this vulnerability for some rea-

son. These steps are reconnaissance, weaponization, delivery, and exploitation. Example reasons
for why a step may not be reliably automatable include (1) the vulnerable component is not
searchable or enumerable on the network, (2) weaponization may require human direction for
each target, (3) delivery may require channels that widely deployed network security configura-
tions block, and (3) exploitation may be frustrated by adequate exploit-prevention techniques ena-
bled by default; ASLR is an example of an exploit-prevention tool.

• Rapid. Steps 1-4 of the of the kill chain can be reliably automated. If the vulnerability allows re-
mote code execution or command injection, the default response should be rapid.

4.4.3.2 Value Density
Value density is described as diffuse or concentrated:
• Diffuse. The system that contains the vulnerable component has limited resources. That is, the re-

sources that the adversary will gain control over with a single exploitation event are relatively
small. Examples of systems with diffuse value are email accounts, most consumer online banking
accounts, common cell phones, and most personal computing resources owned and maintained by
users. (A “user” is anyone whose professional task is something other than the maintenance of the
system or component. As with safety impact, a “system operator” is anyone who is professionally
responsible for the proper operation or maintenance of a system.)

• Concentrated. The system that contains the vulnerable component is rich in resources. Heuristi-
cally, such systems are often the direct responsibility of “system operators” rather than users. Ex-
amples of concentrated value are database systems, Kerberos servers, web servers hosting login
pages, and cloud service providers. However, usefulness and uniqueness of the resources on the
vulnerable system also inform value density. For example, encrypted mobile messaging platforms

30 Hutchins, E.M.; Cloppert, M.J.; & Amin, R.M. “Intelligence-driven computer network defense informed by analysis of

adversary campaigns and intrusion kill chains.” Leading Issues in Information Warfare & Security Research. 2011:
1(1):80.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

may have concentrated value, not because each phone’s messaging history has a particularly large
amount of data, but because it is uniquely valuable to law enforcement.

The output for the utility decision point is visualized in Table 7.

Table 7: Utility to the Adversary, as a Combination of Virulence and Value Density

Virulence
Rapid Efficient Super Effective

Slow Laborious Efficient

 Diffuse Concentrated

 Value Density

Alternative heuristics for proxying adversary utility are plausible. One such example is the value the
vulnerability would have were it sold on the open market. Some firms, such as Zerodium,31 make such
pricing structures public. The valuable exploits track the virulence and value density heuristics for the
most part. Within a single system—whether it is Apache, Windows, iOS or WhatsApp—more auto-
mated kill chain steps successfully leads to higher exploit value. Remote code execution with sandbox
escape and without user interaction are the most valuable exploits, and those features describe automa-
tion of the relevant kill chain steps. How equivalently virulent exploits for different systems are priced
relative to each other is more idiosyncratic. Price does not only track value density of the system, but
presumably also the existing supply of exploits and the installation distribution among the targets of
Zerodium’s customers. Currently, we simplify the analysis and ignore these factors. However, future
work should look for and prevent large mismatches between the outputs of the utility decision point
and the exploit markets.

4.4.4 Safety Impact (Developer, Applier)
Safety Impacts of Affected System Compromise
We take an expansive view of safety, in which a safety violation is a violation of what the Centers for
Disease Control (CDC) calls well-being.32 Physical well-being violations are common safety viola-
tions, but we also include economic, social, emotional, and psychological well-being as important.
Weighing fine differences among these categories is probably not possible, so we will not try. Each
decision option lists examples of the effects that qualify for that value/answer in the various types of
violations of well-being. These examples should not be considered comprehensive or exhaustive, but
rather as suggestive.

The stakeholder should consider the safety impact on the operators33 and users of the software they
provide. If software is repackaged and resold by a stakeholder to further downstream entities who will
then sell a product, the initial stakeholder can only reasonably consider so many links in that supply

31 https://zerodium.com/program.html
32 Centers for Disease Control and Prevention. “How is well-being defined?” https://www.cdc.gov/hrqol/wellbe-

ing.htm#three. Health-Related Quality of Life (HRQOL). August 2019.
33 By “system operator” we mean those who are professionally responsible for the proper operation of the cyber-physical

system, as the term is used in the safety analysis literature.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

chain. But a stakeholder should know its immediate consumers one step away in the supply chain.
Those consumers may repackage or build on the software and then provide that product further on.

We expect that a stakeholder should be aware of common usage of their software about two steps in
the supply chain away. This expectation holds in both open source and proprietary contexts. Further
steps along the supply chain are probably not reasonable for the stakeholder to consider consistently;
however, this is not license to willfully ignore common downstream uses of the stakeholder’s soft-
ware. If the stakeholder is contractually or legally responsible for safe operation of the software or
cyber-physical system of which it is part, that also supersedes our rough supply-chain depth considera-
tions. For software used in a wide variety of sectors and deployments, the stakeholder may need to es-
timate an aggregate safety impact. Aggregation suggests that the stakeholder’s response to this deci-
sion point cannot be less than the most severe plausible safety impact, but we leave the specific
aggregation method or function as a domain-specific extension for future work.

4.4.4.1 Advice for Gathering Information to Answer the Safety Impact Question
The factors that influence the safety impact level are diverse. This paper does not exhaustively discuss
how a stakeholder should answer a question; that is a topic for future work. At a minimum, under-
standing safety impact should include gathering information about survivability of the vulnerable
component, determining available operator actions to compensate for the vulnerable component, un-
derstanding relevant insurance, and determining the viability of existing backup measures. Each of
these information items depends heavily on domain-specific knowledge, and so it is out of the scope
of this paper to give a general-purpose strategy for how they should be included. For example, viable
manual backup mechanisms are likely important in assessing the safety impact of an industrial control
system in a sewage plant, but in banking the insurance structures that prevent bankruptcies are more
important.

Table 8: Safety Impact Decision Values

Safety Impact34 Type of Harm Description

None All Does not mean no impact literally; it just means that the effect is below the threshold for all aspects
described in Minor

Minor
(Any one or
more of these
conditions
hold.)

Physical harm Physical discomfort for users (not operators) of the system

Operator
resiliency

Requires action by system operator to maintain safe system state as a result of exploitation of the
vulnerability where operator actions would be well within expected operator abilities; OR causes a
minor occupational safety hazard

System
resiliency

Small reduction in built-in system safety margins; OR small reduction in system functional capabili-
ties that support safe operation

Environment Minor externalities (property damage, environmental damage, etc.) imposed on other parties

Financial Financial losses, which are not readily absorbable, to multiple persons

Psychological Emotional or psychological harm, sufficient to be cause for counselling or therapy, to multiple per-
sons

34 These categories are based on hazard categories for aircraft software. See DO-187C (Software Considerations in Air-

borne Systems and Equipment Certification) and Section 3.3.2 of the FAA System Safety Handbook, Dec 2000
(https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap
3_1200.pdf).

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Safety Impact34 Type of Harm Description

Major
(Any one or
more of these
conditions
hold.)

Physical harm Physical distress and injuries for users (not operators) of the system

Operator
resiliency

Requires action by system operator to maintain safe system state as a result of exploitation of the
vulnerability where operator actions would be within their capabilities but the actions require their full
attention and effort; OR significant distraction or discomfort to operators; OR causes significant occu-
pational safety hazard

System
resiliency

System safety margin effectively eliminated but no actual harm; OR failure of system functional capa-
bilities that support safe operation

Environment Major externalities (property damage, environmental damage, etc.) imposed on other parties

Financial Financial losses that likely lead to bankruptcy of multiple persons

Psychological Widespread emotional or psychological harm, sufficient to be cause for counselling or therapy, to
populations of people

Hazardous
(Any one or
more of these
conditions
hold.)

Physical harm Serious or fatal injuries, where fatalities are plausibly preventable via emergency services or other
measures

Operator
resiliency

Actions that would keep the system in a safe state are beyond system operator capabilities, resulting
in adverse conditions; OR great physical distress to system operators such that they cannot be ex-
pected to operate the system properly

System
resiliency

Parts of the cyber-physical system break; system’s ability to recover lost functionality remains intact

Environment Serious externalities (threat to life as well as property, widespread environmental damage, measura-
ble public health risks, etc.) imposed on other parties

Financial Socio-technical system (elections, financial grid, etc.) of which the affected component is a part is
actively destabilized and enters unsafe state

Psychological N/A

Catastrophic
(Any one or
more of these
conditions
hold.)

Physical harm Multiple immediate fatalities (Emergency response probably cannot save the victims.)

Operator
resiliency

Operator incapacitated (includes fatality or otherwise incapacitated)

System resiliency Total loss of whole cyber-physical system, of which the software is a part

Environment Extreme externalities (immediate public health threat, environmental damage leading to small eco-
system collapse, etc.) imposed on other parties

Financial Social systems (elections, financial grid, etc.) supported by the software collapse

Psychological N/A

4.4.5 System Exposure (Applier)
The Accessible Attack Surface of the Affected System or Service
Measuring attack surface precisely is difficult, and we do not propose to perfectly delineate between
small and controlled access. If a vulnerability cannot be patched, other mitigations may be used. Usu-
ally, the effect of these mitigations is to reduce exposure of the vulnerable component. Therefore, an
applier’s response to Exposure may change if such mitigations are put in place. If a mitigation changes
exposure and thereby reduces the priority of a vulnerability, that mitigation can be considered a suc-
cess. Whether that mitigation allows the applier to defer further action varies according to each case.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Table 9: Exposure Decision Values

Small Local service or program; highly controlled network

Controlled Networked service with some access restrictions or mitigations already in place (whether locally or on
the network). A successful mitigation must reliably interrupt the adversary’s attack, which requires the
attack is detectable both reliably and quickly enough to respond. Controlled covers the situation in
which a vulnerability can be exploited through chaining it with other vulnerabilities. The assumption is
that the number of steps in the attack path is relatively low; if the path is long enough that it is implau-
sible for an adversary to reliably execute it, then exposure should be small.

Unavoidable Internet or another widely accessible network where access cannot plausibly be restricted or con-
trolled (e.g., DNS servers, web servers, VOIP servers, email servers)

4.4.6 Mission Impact (Applier)
Impact on Mission Essential Functions35 of the Organization
A mission essential function (MEF) is a function “directly related to accomplishing the organization’s
mission as set forth in its statutory or executive charter” (footnote 35, page A-1). Identifying MEFs is
part of business continuity planning or crisis planning. The rough difference between MEFs and non-
essential functions is that an organization “must perform a[n MEF] during a disruption to normal oper-
ations” (footnote 35, page B-2). The mission is the reason an organization exists, and MEFs are how
that mission is affected. Non-essential functions do not directly support the mission per se; however,
they support the smooth delivery or success of MEFs. Financial losses—especially to publicly traded
for-profit corporations—are covered here as a (legally mandated) mission of such corporations is fi-
nancial performance.

Table 10: Mission Impact Decision Values

None Little to no impact

Non-Essential
Degraded

Degradation of non-essential functions; chronic degradation would eventually harm essential
functions

MEF Support
Crippled

Activities that directly support essential functions are crippled; essential functions continue for a
time

MEF Failure Any one mission essential function fails for period of time longer than acceptable; overall mis-
sion of the organization degraded but can still be accomplished for a time

Mission Failure Multiple or all mission essential functions fail; ability to recover those functions degraded; organ-
ization’s ability to deliver its overall mission fails

4.4.6.1 Advice for Gathering Information to Answer the Mission Impact Question
The factors that influence the mission impact level are diverse. This paper does not exhaustively dis-
cuss how a stakeholder should answer a question; that is a topic for future work. At a minimum,

35 For information about identification of mission essential functions, see Federal Continuity Directive 2: Federal Executive

Branch Mission Essential Functions and Candidate Primary Mission Essential Functions Identification and Submis-
sion Process from June 2017 (https://www.fema.gov/media-library-data/1499702987348-
c8eb5e5746bfc5a7a3cb954039df7fc2/FCD-2June132017.pdf).

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

understanding mission impact should include gathering information about the critical paths that in-
volve vulnerable components, viability of contingency measures, and resiliency of the systems that
support the mission. There are various sources of guidance on how to gather this information; see for
example the FEMA guidance in Continuity Directive 235 or OCTAVE FORTE.36 This is part of risk
management more broadly. It should require the vulnerability management team to interact with more
senior management to understand mission priorities and other aspects of risk mitigation.

As a heuristic, we suggest using the question described in Section 4.4.3, Utility (Developer, Applier),
to constrain mission impact. If utility is super effective, then mission impact is at least “MEF support
crippled.” If utility is efficient, then mission impact is at least “Non-essential degraded.”

4.5 Relationship to asset management
Our method is for prioritizing vulnerabilities based on the risk stemming from exploitation. There are
other reasonable asset management considerations that may influence remediation timelines. There are
at least three aspects of asset management that may be important but are out of scope for SSVC. First
and most obvious is the transaction cost of conducting the mitigation or fix. System administrators are
paid to develop or apply any fixes or mitigations, and there may be other transactional costs such as
downtime for updates. Second is the risk of the fix or mitigation introducing a new error or vulnerabil-
ity. Regression testing is part of managing this type of risk. Finally, there may be an operational cost
of applying a fix or mitigation, representing an ongoing change of functionality or increased overhead.
A decision maker could order work within one SSVC priority class (scheduled, out-of-band, etc.)
based on these asset management considerations, for example. Once the organization fixes all the
high-priority vulnerabilities, they can then fix the medium-level vulnerabilities with the same effort
spent on the high-priority ones.

Asset management and risk management also drive some of the up-front work an organization would
need to do to gather some of the necessary information. This situation is not new; an asset owner can-
not prioritize which fixes to deploy to its assets if it does not know what assets it owns and their loca-
tions. The organization can pick its choice of tools for these things; there are about 200 asset manage-
ment tools on the market.37 Standards like the Software Bill of Materials (SBOM)38 would likely
reduce the burden on asset management, but these are still maturing. If an organization does not have
an asset management or risk management (see Section 4.4.6.1) plan and process in place, then it will
have a non-trivial amount of work to do to establish these processes before it can take full advantage
of SSVC.

36 Brett Tucker. OCTAVE® FORTE and FAIR Connect Cyber Risk Practitioners with the Boardroom. June 2018. https://in-

sights.sei.cmu.edu/insider-threat/2018/06/octave-forte-and-fair-connect-cyber-risk-practitioners-with-the-board-
room.html

37 Captera. IT Asset Management Software. May 24, 2020. https://www.capterra.com/it-asset-management-software/
38 Michelle Jump and Art Manion. 2019. Framing Software Component Transparency: Establishing a Common Software

Bill of Material (SBOM). Technical Report. National Telecommunications and Information Administration, Washing-
ton, DC.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4.6 Patch Developer Tree
Figure 1 shows the proposed prioritization decision tree for the patch developer. Both developer and
applier trees use the above decision point definitions. Each tree is a compact way of expressing asser-
tions or hypotheses about the relative priority of different situations. Each tree organizes how we pro-
pose a stakeholder should treat these situations. Rectangles are decision points, and triangles represent
outcomes. The values for each decision point are different, as described above. Outcomes are priority
decisions (defer, scheduled, out-of-band, immediate); outcome triangles are color coded:
• Defer = gray with green outline
• Scheduled = yellow
• Out-of-Band = orange
• Immediate = red with black outline

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 1: Proposed Vulnerability Prioritization Decision Tree for Patch Developer

Exploitation

Utility

Technical
impact Safety

impact immediate

Safety
impact immediate

out-of-band

Technical
impact

Safety
impact

immediate

out-of-band

out-of-band

Technical
impact

Safety
impact

immediate

immediate

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Utility

Technical
impact

Safety
impact

immediate

immediate

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Technical
impact

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

Technical
impact

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

out-of-band

scheduled

scheduled

Utility

Technical
impact

Safety
impact

out-of-band

out-of-band

scheduled

Technical
impact

Safety
impact

out-of-band

out-of-band

scheduled

Safety
impact

out-of-band

scheduled

defer

Technical
impact

Safety
impact

out-of-band

scheduled

defer

Safety
impact

scheduled

defer

defer

active

super e↵ective

total all

partial
all others

none

e�cient all

all others

minor

none

laborious

total

catastrophic

hazardous

all others

partial

all others

major

minor

none

PoC

super e↵ective

total

catastrophic

hazardous

all others

partial

all others

major

minor

none

e�cient

total

all others

major

minor

none

partial

all others

major

minor

none

laborious

total

catastrophic

hazardous

major

all others

partial

all others

minor

none

none

super e↵ective all

catastrophic

hazardous

all others

e�cient

total

catastrophic

hazardous

all others

partial

catastrophic

all others

none

laborious

total

catastrophic

all others

minor

partial

all others

minor

none

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4.7 Patch Applier Tree
The proposed patch applier tree is depicted in Figure 2: Proposed Vulnerability Prioritization Decision

Tree for Patch Appliers (Continued in Figure 3 and Figure 4Error! Reference source not
found.)

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Exploitation Exposure

Mission
impact

Safety
impact immediate

Safety
impact immediate

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

defer

Mission
impact

Safety
impact immediate

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

defer

Safety
impact

immediate

out-of-band

scheduled

defer

Mission
impact

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

out-of-band

out-of-band

scheduled

Safety
impact

out-of-band

scheduled

scheduled

defer

Safety
impact

out-of-band

scheduled

scheduled

defer

PoC

unavoidable

mission fail all

MEF fail
catastrophic

all others

MEF crippled

catastrophic

hazardous

major

all others

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

major

minor

none

controlled

mission fail all

MEF fail

catastrophic

hazardous

major

all others

MEF crippled

catastrophic

hazardous

all others

degraded

catastrophic

hazardous

major

minor

none

none

catastrophic

hazardous

major

all others

small

mission fail

catastrophic

hazardous

major

all others

MEF fail

catastrophic

hazardous

all others

MEF crippled

catastrophic

hazardous

all others

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

major

all others

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 3, Figure 4, and Error! Reference source not found.. The state of exploitation is the first de-
cision point, but in an effort to make the tree legible, we split the tree into three sub-trees over three
pages. We suggest making the decision about exploitation as usual, and then going to the correct sub-
tree.

Figure 2: Proposed Vulnerability Prioritization Decision Tree for Patch Appliers (Continued in Figure 3 and
Figure 4Error! Reference source not found.)

Exploitation Exposure

Mission
impact

Safety
impact immediate

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

defer

Mission
impact

Safety
impact out-of-band

Safety
impact

out-of-band

out-of-band

scheduled

Safety
impact

out-of-band

scheduled

scheduled

defer

Safety
impact

out-of-band

out-of-band

scheduled

defer

Mission
impact

Safety
impact out-of-band

scheduled

Safety
impact out-of-band

scheduled

Safety
impact

out-of-band

scheduled

defer

Safety
impact

out-of-band

scheduled

scheduled

defer

Safety
impact

out-of-band

scheduled

defer

none

unavoidable

mission fail
catastrophic

all others

MEF fail

catastrophic

hazardous

major

all others

MEF crippled

catastrophic

hazardous

all others

all others

catastrophic

hazardous

major

minor

none

controlled

mission fail all

MEF fail

catastrophic

hazardous

all others

MEF crippled

all others

major

minor

none

all others

catastrophic

hazardous

major

all others

small

mission fail
catastrophic

all others

MEF fail
catastrophic

all others

MEF crippled

catastrophic

all others

none

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

all others

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 3: Proposed Vulnerability Prioritization Decision Tree for Patch Appliers (Continued from Figure 2
and in Figure 4).

Exploitation Exposure

Mission
impact

Safety
impact immediate

Safety
impact immediate

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

defer

Mission
impact

Safety
impact immediate

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

scheduled

defer

Safety
impact

immediate

out-of-band

scheduled

defer

Mission
impact

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

out-of-band

out-of-band

scheduled

Safety
impact

out-of-band

scheduled

scheduled

defer

Safety
impact

out-of-band

scheduled

scheduled

defer

PoC

unavoidable

mission fail all

MEF fail
catastrophic

all others

MEF crippled

catastrophic

hazardous

major

all others

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

major

minor

none

controlled

mission fail all

MEF fail

catastrophic

hazardous

major

all others

MEF crippled

catastrophic

hazardous

all others

degraded

catastrophic

hazardous

major

minor

none

none

catastrophic

hazardous

major

all others

small

mission fail

catastrophic

hazardous

major

all others

MEF fail

catastrophic

hazardous

all others

MEF crippled

catastrophic

hazardous

all others

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

major

all others

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Figure 4: Proposed Vulnerability Prioritization Decision Tree for Patch Appliers (Continued from Figure 2
and Figure 3)

Exploitation Exposure

Mission
impact

Safety
impact immediate

Safety
impact immediate

Safety
impact

immediate

out-of-band

out-of-band

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

defer

Mission
impact

Safety
impact immediate

Safety
impact

immediate

out-of-band

out-of-band

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

defer

Mission
impact

Safety
impact

immediate

out-of-band

out-of-band

out-of-band

Safety
impact

immediate

out-of-band

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

Safety
impact

immediate

out-of-band

scheduled

defer

Safety
impact

immediate

out-of-band

scheduled

defer

active

unavoidable

mission fail all

MEF fail all

MEF crippled

all others

major

minor

none

degraded

all others

major

minor

none

none

all others

major

minor

none

controlled

mission fail all

MEF fail

all others

major

minor

none

MEF crippled

all others

major

minor

none

degraded

catastrophic

hazardous

major

all others

none

catastrophic

hazardous

all others

none

small

mission fail

all others

major

minor

none

MEF fail

catastrophic

hazardous

major

all others

MEF crippled

catastrophic

hazardous

all others

degraded

catastrophic

hazardous

all others

none

none

catastrophic

hazardous

major

all others

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

4.8 Evidence Gathering Guidance

To answer each of these decision points, a patch developer or patch applier should, as much as possi-
ble, have a repeatable evidence collection and evaluation process. However, we are proposing deci-
sions for humans to make, so evidence collection and evaluation is not totally automatable. That ca-
veat notwithstanding, some automation is possible.

For example, whether exploitation modules are available in ExploitDB, Metasploit, or other sources is
straightforward. We hypothesize that searching Github and Pastebin for exploit code should be au-
tomatable. A developer or applier could then define “exploit PoC available” to be positive search re-
sults for a set of inputs derived from the CVE entry in at least one of these venues. At least, for those
vulnerabilities that are not “automatically” PoC-ready, such as TLS middleperson attacks or network
replays.

Some of the decision points require some substantial upfront analysis effort to gather risk assessment
or organizational data. However, once gathered, this information can be efficiently reused across
many vulnerabilities and only refreshed occasionally. An obvious example of this is the mission im-
pact decision point. To answer this, a patch applier must analyze their essential functions, how they
interrelate, and how they are supported. Exposure is similar; answering that decision point requires an
asset inventory, adequate understanding of the network topology, and a view of the enforced security
controls. Independently operated scans, such as Shodan or Shadowserver, may play a role in evaluat-
ing exposure, but the entire exposure question cannot be reduced to a binary question of whether an
organization’s assets appear in such databases. Once the applier has the situational awareness to un-
derstand MEFs or exposure, selecting the answer for each individual vulnerability is usually straight-
forward.

Stakeholders who use the prioritization method should consider releasing the priority with which they
handled the vulnerability. This disclosure has various benefits. For example, if the developer publishes
a priority ranking, then appliers could consider that in their decision-making process. One reasonable
way to include it is to break ties for the applier. If an applier has three “scheduled” vulnerabilities to
patch, they may address them in any order. If two vulnerabilities were produced by the developer as
“scheduled” patches, and one was “out-of-band,” then the applier may want to use that information to
favor the latter.

In the case where no information is available or the organization has not yet matured its initial situa-
tional analysis, we can suggest something like defaults for some decision points. If the applier does
not know their exposure, that means they do not know where the devices are or how they are con-
trolled, so they should assume exposure is unavoidable. If the decision maker knows nothing about the
environment in which the device is used, we suggest assuming a major safety impact. This position is
conservative, but software is thoroughly embedded in daily life now, so we suggest that the decision
maker provide evidence that no one’s well-being will suffer. The reach of software exploits is no
longer limited to a research network. Similarly, with mission impact, the applier should assume that
the software is in use at the organization for a reason, and that it supports essential functions unless
they have evidence otherwise. With a total lack of information, assume MEF support crippled as a de-
fault. Exploitation needs no special default; if adequate searches are made for exploit code and none is

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

found, the answer is none. The decision set {none, unavoidable, MEF crippled, major} results in a
scheduled patch application.

4.9 Development Methodology

Our initial starting point for the decision trees was different than what we present here. For example,
we initially hypothesized different trees for different sectors (e.g., safety-critical, highly regulated, and
everyone else). The initial trees also included additional decision points, such as developer’s patch
distribution channels and financial loss to the applier of the vulnerability being exploited. We con-
ducted informal evaluations of these trees by selecting a past CVE and discussing how each author
would evaluate the priority of that vulnerability. This method quickly revealed some problems; we it-
erated this tabletop exercise until broad-scope problems stopped blocking our informal evaluations.
We quickly reorganized the trees for different sectors into just one tree per role, for example, but with
the new trees always asking the safety impact question. We also elaborated assumptions about scope
and what safety and mission impact mean during this process. During this process, we also focused on
decision trees for the patch developer and patch applier; we left the coordination decision for future
work.

For this tabletop refinement, we could not select a mathematically representative set of CVEs. The
goal was to select a handful of CVEs that would cover diverse types of vulnerabilities. The CVEs that
we used for our tabletop exercises are CVE-2017-8083, CVE-2019-2712, CVE-2014-5570, and CVE-
2017-5753. We discussed each one from the perspective of patch developer and patch applier. We
evaluated CVE-2017-8083 twice because our understanding and descriptions had changed materially
after the first three CVEs (six evaluation exercises). After we were satisfied that the decision trees
were clearly defined and captured our intentions, we began the formal evaluation of the draft trees,
which we describe in the next section.

5 Evaluation of the Draft Trees

We conducted a pilot test on the adequacy of the hypothesized decision trees. The method of the pilot
test is described in Section 5.1. The study resulted in several changes to the hypothesized trees; we
capture those changes and the reason for each of them in Section 5.2. The trees in Sections 4.6 and 4.7
include the improvements reported in Section 5.3.

5.1 Pilot Methodology

The pilot study tested inter-rater agreement of decisions reached. Each author played the role of an an-
alyst in both stakeholder groups (developing patching and applying patches) for nine vulnerabilities.
We selected these nine vulnerabilities based on expert analysis, with the goal that the nine cases cover
a useful series of vulnerabilities of interest. Specifically, we selected three vulnerabilities to represent
safety-critical cases, three to represent regulated-systems cases, and three to represent general compu-
ting cases.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

During the pilot, we did not form guidance on how to assess the values of the decision points. How-
ever, we did standardize the set of evidence that was taken to be true for the point in time representing
the evaluation. Given this fixed information sheet, we did not synchronize an evaluation process for
how to decide whether exploitation, for example, should take the value of none, PoC, or active. We
agreed on the descriptions of the decision points and the descriptions of their values in (a prior version
of) Section 4.4. The goal of the pilot was to test the adequacy of those descriptions by evaluating
whether the analysts agreed. We improved the decision point descriptions based on the results of the
pilot; our changes are documented in Section 5.3.

In the design of the pilot, we held constant the information available about the vulnerability. This
strategy restricted the analyst to decisions based on the framework given that information. That is, it
controlled for differences in information search procedure among the analysts. The information search
procedure should be controlled because this pilot was about the framework content, not how people
answer questions based on that content. After the framework is more stable, a separate study should be
devised that shows how analysts should answer the questions in the framework. The basis for the as-
sessment that information search will be an important aspect in using the evaluation framework is
based on our experience while developing the framework. During informal testing, often disagree-
ments about a result involved a disagreement about what the scenario actually was; different infor-
mation search methods and prior experiences led to different understandings of the scenario. This pilot
methodology holds the information and scenario constant to test agreement about the descriptions
themselves. This strategy makes constructing a prioritization system more tractable by separating
problems in how people search for information from problems in how people make decisions. This
paper focuses only on the structure of decision making. Advice about how to search for information
about a vulnerability is a separate project that will be part of future work. In some domains, namely
exploit availability, we have started that work in parallel.

The structure of the pilot test is as follows. Table 11 provides an example of the information provided
to each analyst. The developer portfolio details use strikeout font because this decision item was re-
moved after the pilot. The decision procedure for each case is as follows: for each analyst, for each
vulnerability, for each stakeholder group, do the following.
1. Start at the root note of the relevant decision tree (patch applier or patch developer).
2. Document the decision branch that matches the vulnerability for this stakeholder context.
3. Document the evidence that supports that decision.
4. Repeat this decision-and-evidence process until the analyst reaches a leaf node in the tree.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Table 11: Example of Scenario Information Provided to Analysts (Using CVE-2019-9042 as the Example)

Information Item Description Provided to Analysts

Use of Cyber-
Physical System

Sitemagic’s content management system (CMS) seems to be fairly popular among smaller busi-
nesses because it starts out with a free plan to use it. Then it gradually has small increments in
payment for additional features. It’s ease-of-use, good designs, and one-stop-shopping for busi-
nesses attracts a fair number of clients. Like any CMS, it “manages the creation and modifica-
tion of digital content. These systems typically support multiple users in a collaborative environ-
ment, allowing document management with different styles of governance and workflows.
Usually the content is a website.”39

State of
Exploitation

Appears to be active exploitation of this vulnerability according to NVD. They have linked to the
exploit: http://www.iwantacve.cn/index.php/archives/116/.

Developer
Portfolio Details

Sitemagic is an open-source project. The only thing the brand name applies to is the CMS, and
it does not appear to be part of another open-source umbrella. The project is under active
maintenance (i.e., it's not a dead project).

Technical Impact
of Exploit

An authenticated user can upload a .php file to execute arbitrary code with system privileges.

Scenario Blurb

We are a small business that uses Sitemagic to help run business. Sitemagic handles every-
thing from digital marketing and site design to facilitating the e-commerce transactions of the
website. We rely on this website heavily, even though we do have a brick-and-mortar store.
Many times, products are not available in-store, but are available online, so we point many cus-
tomers to our online store.

Applier Mission

We are a private company that must turn a profit to remain competitive. We have a desire to pro-
vide customers with a valuable product at a reasonable price, while still turning a profit to run the
business. As we are privately held (and not public), we are free to choose the best growth strat-
egy (we do not legally bound to demonstrate quarterly earnings for shareholders, we can take a
longer-term view if it makes us competitive).

Applier
Deployment of
Affected System

We have deployed this system in such that only the web designer Cheryl and the IT admin Sally
are allowed to access the CMS as users. They login through a password-protected portal that
can be accessed anywhere in the world for remote administration. The CMS publishes content
to the web, and that web server and site are publicly available.

This test structure produced a series of lists similar in form to the contents of Table 12. Analysts also
noted how much time they spent on each vulnerability in each stakeholder group.

Table 12: Example Documentation of a Single Decision Point

Decision Point Branch Selected Supporting Evidence

Applier tree;
exploitation=active

Controlled The CMS has a limited number of authorized users, and the vulnerability
is exploitable only by an authenticated user.

We evaluated inter-rater agreement in two stages. In the first stage, each analyst independently docu-
mented their decisions. This stage produced 18 sets of decisions (nine vulnerabilities across each of
two stakeholder groups) per analyst. In the second stage, we met to discuss decision points where at
least one analyst differed from the others. If any analyst changed their decision, they appended the in-
formation and evidence they gained during this meeting in the “supporting evidence” value in their
documentation. No changes to decisions were forced, and prior decisions were not erased, just

39 https://en.wikipedia.org/wiki/Content_management_system

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

amended. After the second stage, we calculated some statistical measures of inter-rater agreement to
help guide the analysis of problem areas.

To assess agreement, we calculate Fleiss’ kappa, both for the value in the leaf node reached for each
case and every decision in a case.40 Evaluating individual decisions is complicated slightly because the
different paths through the tree mean that a different number of analysts may have evaluated certain
items, and Fleiss’ kappa requires a fixed number of raters. “Leaf node reached” is described to pick
out the specific path through the tree the analyst selected and to treat that as a label holistically. Meas-
uring agreement based on the path has the drawback that ostensibly similar paths, which agree on 3 of
4 decisions for example, are treated as no more similar than paths that agree on 0 of 4 decisions. So
the two measures of agreement (per decision and per path) are complementary, and we report both.

5.1.1 Pilot participant details

The pilot participants are the five authors plus one analyst who had not seen the draft system before
participating. Five of the six participants had spent at least one year as professional vulnerability ana-
lysts prior to the pilot (Spring was the exception). Three of the participants had at least ten years of
experience each. The participants experience is primarily as coordinators at the CERT® Coordination
Center. On the one hand, this is a different perspective than either developers or appliers; on the other,
the coordinator role is an information broker that often interacts with these perspectives.41

These participant demographics limit the generalizability of the results of the pilot. Even though the
results cannot be systematically generalized to other analysts, there are at least three benefits to con-
ducting the pilot among this limited demographic. First, it should surface any material tacit disagree-
ments about term usage among the authors. Tacit agreements that are not explained in the text likely
survive the pilot study without being acknowledged, but places where the authors tacitly disagreed
should be surfaced. We found this to be the case; Section 5.3 documents these results. Second, the pi-
lot provides a case study that demonstrate SSVC is at least possible for some small group of analysts
to use. This achievement is not large, but it is a first step. Thirdly, the pilot provides a proof of concept
method and metric that any vulnerability prioritization method could use to examine usability for ana-
lysts more generally. While the effect of education on vulnerability assessment with CVSS has been
tested,42 we are not aware of any current vulnerability prioritization method that tests usability or
agreement among analysts as part of the development process. Future work on SSVC as well as fur-
ther development of other prioritization methods can benefit from using the method described in the
pilot. Future instances should use more representative participant demographics.

40 Fleiss, Joseph L., and Jacob Cohen. "The equivalence of weighted kappa and the intraclass correlation coefficient as

measures of reliability." Educational and psychological measurement 33, no. 3 (1973): 613-619.
41 Allen D. Householder; Garret Wassermann; Art Manion; & Chris King. The CERT® Guide to Coordinated Vulnerability

Disclosure. Section 3. https://vuls.cert.org/confluence/display/CVD/3.+Roles+in+CVD
42 Ibid. 14

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

5.1.2 Vulnerabilities used as examples

The vulnerabilities used as case studies are as follows. All quotes are from the National Vulnerability
Database (NVD) and are illustrative of the vulnerability; however, during the study each vulnerability
was evaluated according to information analogous to that in Table 11.

Safety-Critical Cases
• CVE-2015-5374: “Vulnerability … in [Siemens] Firmware variant PROFINET IO for EN100

Ethernet module… Specially crafted packets sent to port 50000/UDP could cause a denial-of-ser-
vice of the affected device…”

• CVE-2014-0751: “Directory traversal vulnerability in … GE Intelligent Platforms Proficy
HMI/SCADA - CIMPLICITY before 8.2 SIM 24, and Proficy Process Systems with
CIMPLICITY, allows remote attackers to execute arbitrary code via a crafted message to TCP
port 10212, aka ZDI-CAN-1623.”

• CVE-2015-1014: “A successful exploit of these vulnerabilities requires the local user to load a
crafted DLL file in the system directory on servers running Schneider Electric OFS v3.5 with ver-
sion v7.40 of SCADA Expert Vijeo Citect/CitectSCADA, OFS v3.5 with version v7.30 of Vijeo
Citect/CitectSCADA, and OFS v3.5 with version v7.20 of Vijeo Citect/CitectSCADA. If the ap-
plication attempts to open that file, the application could crash or allow the attacker to execute ar-
bitrary code.”

Regulated Systems Cases
• CVE-2018-14781: “Medtronic insulin pump [specific versions] when paired with a remote con-

troller and having the “easy bolus” and “remote bolus” options enabled (non-default), are vulnera-
ble to a capture-replay attack. An attacker can … cause an insulin (bolus) delivery.”

• CVE-2017-9590: “The State Bank of Waterloo Mobile … app 3.0.2 … for iOS does not verify
X.509 certificates from SSL servers, which allows man-in-the-middle attackers to spoof servers
and obtain sensitive information via a crafted certificate.”

• CVE-2017-3183: “Sage XRT Treasury, version 3, fails to properly restrict database access to au-
thorized users, which may enable any authenticated user to gain full access to privileged database
functions. Sage XRT Treasury is a business finance management application. …”

General Computing Cases
• CVE-2019-2691: “Vulnerability in the MySQL Server component of Oracle MySQL (subcompo-

nent: Server: Security: Roles). Supported versions that are affected are 8.0.15 and prior. Easily
exploitable vulnerability allows high privileged attacker with network access via multiple proto-
cols to … complete DoS of MySQL Server.”

• CVE-2019-9042: “[I]n Sitemagic CMS v4.4… the user can upload a .php file to execute arbitrary
code, as demonstrated by 404.php. This can only occur if the administrator neglects to set FileEx-
tensionFilter and there are untrusted user accounts. …”

• CVE-2017-5638: “The Jakarta Multipart parser in Apache Struts 2 2.3.x before 2.3.32 and 2.5.x
before 2.5.10.1 has incorrect exception handling and error-message generation during file-upload

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

attempts, which allows remote attackers to execute arbitrary commands via crafted [specific head-
ers], as exploited in the wild in March 2017…”

5.2 Pilot Results

For each of the nine CVEs, six analysts rated the priority of the vulnerability as both a developer and
applier. Table 13 summarizes the results by reporting the inter-rater agreement for each decision point.
For all measures, agreement (k) is above zero, which is generally interpreted as some agreement
among analysts. Below zero is interpreted as noise or discord. Closer to 1 indicates more or stronger
agreement.

How close k should be to 1 before agreement can be considered strong enough or reliable enough is a
matter of some debate. The value certainly depends on the number of options among which analysts
select. For those decision points with five options (mission and safety impact), agreement is lowest.
Although portfolio value has a higher k than mission or safety impact, it may not actually have higher
agreement because portfolio value only has two options. The results for portfolio value are nearly in-
distinguishable as far as level of statistical agreement from mission impact and safety impact. The sta-
tistical community does not have hard and fast rules for cut lines on adequate agreement. We treat k as
a descriptive statistic rather than a test statistic.

Table 13 is encouraging, though not conclusive. k<0 is a strong sign of discordance. Although it is un-
clear how close to 1 is success, k<0 would be clear sign of failure. In some ways, these results may be
undercounting the agreement for SSVC as presented. These results are for SSVC prior to the improve-
ments documented in Section 5.3, which are implemented in SSVC as presented in Section 4. On the
other hand, the participant demographics may inflate the inter-rater agreement based on shared tacit
understanding through the process of authorship. The one participant who was not an author surfaced
two places where this was the case, but we expect the organizational homogeneity of the participants
has inflated the agreement somewhat. The anecdotal feedback from vulnerability managers at several
organizations (including VMware43 and McAfee) is about refinement and tweaks, not gross disagree-
ment. Therefore, while further refinement is necessary, this evidence suggests the results have some
transferability to other organizations and are not a total artifact of the participant organization de-
mographics.

Table 13: Inter-Rater Agreement for Decision Points

 Safety
Impact

Exploitation Technical
Impact

Portfolio
Value

Mission
Impact

Exposure Dev
Result

Applier
Result

Fleiss’ k 0.122 0.807 0.679 0.257 0.146 0.480 0.226 0.295

Disagreement
range

2
max 4

1
max 2

1
max 1

1
max 1

2
max 4

1
max 2

1
max 3

2
max 3

43 Muhammad Akbar. A Critical First Look at Stakeholder Specific Vulnerability Categorization (SSVC). Mar 6, 2020.

https://blog.secursive.com/posts/critical-look-stakeholder-specific-vulnerability-categorization-ssvc/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

For all decision points, the presumed goal is for k to be close or equal to 1. The statistics literature has
identified some limited cases in which Fleiss’ k behaves strangely – for example it is lower than ex-
pected when raters are split between 2 of q ratings when q>2.44 This paradox may apply to the safety
and mission impact values, in particular. The paradox would bite hardest if the rating for each vulnera-
bility was clustered on the same two values, for example, minor and major. Falotico and Quatto’s pro-
posed solution is to permute the columns, which is safe with unordered categorical data. Since the
nine vulnerabilities do not have the same answers as each other (that is, the answers are not clustered
on the same two values), we happen to avoid the worst of this paradox, but the results for safety im-
pact and mission impact should be interpreted with some care.

This solution identifies another difficulty of Fleiss’ kappa, namely that it does not preserve any order;
none and catastrophic are considered the same level of disagreement as none and minor. Table 13 dis-
plays a sense of the range of disagreement to complement this weakness. This value is the largest dis-
tance between rater selections on a single vulnerability out of the maximum possible distance. So, for
safety impact, the most two raters disagreed was by two steps (none to major, minor to hazardous, or
major to catastrophic) out of the four possible steps (none to catastrophic). The only values of k that
are reliably comparable are those with the same number of options (that is, the same maximum dis-
tance). In other cases, closer to 1 is better, but how close is close enough to be considered “good”
changes. In all but one case, if raters differed by two steps then there were raters who selected the cen-
tral option between them. The exception was mission impact for CVE-201814781; it is unclear
whether this discrepancy should be localized to a poor test scenario description, or to SSVC’s mission
impact definition. Given it is an isolated occurrence, we expect the scenario description at least partly.

Nonetheless, k provides some way to measure improvement on this a conceptual engineering task.
The pilot evaluation can be repeated, with more diverse groups of stakeholders after the descriptions
have been refined by stakeholder input, to measure fit to this goal. For a standard to be reliably ap-
plied across different analyst backgrounds, skill sets, and cultures, a set of decision point descriptions
should ideally achieve k of 1 for each item in multiple studies with diverse participants. Such a high
level of agreement would be difficult to achieve, but it would ensure that when two analysts assign a
priority with the system that they get the same answer.45

Table 14: SSVC pilot scores compared with the CVSS base scores for the vulnerabilities provided by NVD.

CVE-ID Representative SSVC deci-
sion values46

SSVC recommenda-
tion (dev, applier) NVD’s CVSS base score

CVE-2014-0751 E:N/T:T/U:L/S:H/X:C/M:C (Sched, OOC) 7.5 (High) (v2)

44 Falotico, Rosa, and Piero Quatto. "Fleiss’ kappa statistic without paradoxes." Quality & Quantity 49, no. 2 (2015): 463-

470.
45 This is not the case with CVSSv3; expert assessment of scores varies widely. See Figure 1 in The Effect of Security

Education and Expertise on Security Assessments: The Case of Software Vulnerabilities by Luca Allodi, Marco Cre-
monini, Fabio Massacci, and Woohyun Shim, published in WEIS in 2018.

46 We have not discussed a convenient compressed expression of a set of SSVC decision points. Initialisms similar to a
CVSS vector are used here; Exploitation (E), Technical impact (T), Utility (U), Safety Impact (S), Exposure (X), and
Mission impact (M). S:M is minor, S:J is major; M:F is MEF failure, M:M is mission failure. However, since we cre-
ated Utility in response to the System Value metric’s shortcomings, the pilot results do not include systematic con-
sensus on Utility values.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

CVE-2015-1014 E:N/T:T/U:L/S:J/X:S/M:F (Sched, Sched) 7.3 (High) (v3.0)

CVE-2015-5374 E:A/T:P/U:L/S:H/X:C/M:F (Immed, Immed) 7.8 (High) (v2)

CVE-2017-3183 E:N/T:T/U:E/S:M/X:C/M:C (Sched, Sched) 8.8 (High) (v3.0)

CVE-2017-5638 E:A/T:T/U:S/S:M/X:U/M:C (Immed, OOC) 10.0 (Critical) (v3.0)

CVE-2017-9590 E:P/T:T/U:E/S:M/X:U/M:D (OOC, Sched) 5.9 (Medium) (v3.0)

CVE-2018-14781 E:P/T:P/U:L/S:H/X:C/M:F (OOC, OOC) 5.3 (Medium) (v3.0)

CVE-2019-2691 E:N/T:P/U:E/S:M/X:C/M:C (Sched, Sched) 4.9 (Medium) (v3.0)

CVE-2019-9042 E:A/T:T/U:L/S:N/X:C/M:C (OOC, Sched) 7.2 (High) (v3.0)

14 presents the mode decision point value for each vulnerability tested, as well as the recommendation
that would result from that set based on the trees in Sections 4.6 and 4.7. The comparison with the
NVD’s CVSS base scores mostly confirms that SSVC is prioritizing based on different criteria, as de-
signed. In particular, differences in the state of exploitation and safety impact are suggestive.

Based on these results, we made about ten changes, some bigger than others. We did not execute a
new rater agreement experiment with the updated descriptions. The pilot results are encouraging, and
we believe it is time to open up a wider community discussion.

5.3 Improvements Instigated by the Pilot

The following changes are reflected in Section 4, Decision Trees for Vulnerability Management.
• Technical impact: We clarified that partial/total is decided regarding the system scope definition,

which considers a database or a web server program as the “whole” system. Furthermore, “total”
also includes any technical impact that exposes authentication credentials to the adversary, if
those credentials are to the whole system.

• We added advice for information gathering to answer safety impact and mission impact questions.
This change is needed because of the particularly wide variety of background assumptions ana-
lysts made that influenced results and agreement.

• We clarified that “MEF failure” refers to any one essential function failing, not failure of all of
them. We changed most severe mission impact to “mission failure” to better reflect the relation-
ship between MEFs and the organization’s mission.

• We removed the “developer portfolio value” question since it had poor agreement, and there is no
clear way to fix it. We replaced this question with utility, which better captures the relevant kinds
of value (namely, to the adversary) of the affected component while remaining amenable to prag-
matic analysis.

• We clarified that “proof of concept” (see exploitation) includes cases in which existing tooling
counts as a PoC. The examples listed are suggestive, not exhaustive.

• We reorganized the decision trees based on which items are easier to gather information for or
which ones have a widely verifiable state. This change moved exploitation to the first question.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

• We changed the decision tree results such that if exposure is “small,” then the resulting priority is
lower than before the pilot study. That is, “small” exposure has a stronger effect on reducing ur-
gency.

5.3.1 Questions Removed as Ineffective

In this section, we present ideas we tried but rejected for various reasons. We are not presenting this
section as the final word on excluding these ideas, but we hope the reasons for excluding them are in-
structive, will help prevent others from re-inventing the proverbial wheel, and can guide thinking on
future work.

Initially, we brainstormed approximately 12 potential decision points, most of which we removed
early in our development process through informal testing. These decision points included adversary’s
strategic benefit of exploiting the vulnerability, state of legal or regulatory obligations, cost of devel-
oping a patch, patch distribution readiness, financial losses to customers due to potential exploitation,
and business losses to the applier.

Some of these points left marks on other decision points. The decision point “financial losses of cus-
tomers” led to an amendment of the definition of safety to include “well-being,” such that, for exam-
ple, bankruptcies of third parties are now a major safety impact. The “business losses to the applier”
decision point is covered as a mission impact insofar as profit is a mission of publicly traded corpora-
tions.

Three of the above decision points left no trace on the current system. “State of legal or regulatory ob-
ligations,” “cost of developing a patch,” and “patch distribution readiness” were dropped as either be-
ing too vaguely defined, too high level, or otherwise not within the scope of decisions by the defined
stakeholders. The remaining decision point, “adversary’s strategic benefit of exploiting the vulnerabil-
ity,” transmuted to a different sense of system value. In an attempt to be more concrete and not specu-
late about adversary motives, we considered a different sense of value: developer portfolio value.

The only decision point that we have removed following the pilot is developer portfolio value. This
notion of value was essentially an over-correction to the flaws identified in the “adversary’s strategic
benefit of exploiting the vulnerability” decision point. “Developer portfolio value” was defined as “the
value of the affected component as a part of the developer’s product portfolio. Value is some combi-
nation of importance of a given piece of software, number of deployed instances of the software, and
how many people rely on each. The developer may also include lifecycle stage (early development,
stable release, decommissioning, etc.) as an aspect of value.” It had two possible values: low and high.
As Table 13 demonstrates, there was relatively little agreement among the six analysts about how to
evaluate this decision point. We replaced this sense of portfolio value with utility, which combines
value density and virulence.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

6 Worked Example

As an example, we will evaluate CVE-2018-14781 step by step from the patch applier point of view.
The scenario here is that used for the pilot study. This example uses the decision tree in Section 4.7.
The pilot used slightly different trees, as noted in Section 5.3.

The analyst’s first question is related to exploitation. Technically, one could answer the questions in
any order; however, exploitation is a good starting point because given an adequately defined search
procedure, one can always answer whether it finds an available exploit or proof of concept. The sce-
nario description for the pilot study reads as follows:
• State of exploitation: Metasploit and ExploitDB do not return results for this vulnerability. The

NVD does not report any active exploitation of this vulnerability.

This information rules out “active” given the (perhaps limited) search procedure. While the search did
not produce a precise PoC, based on the description of the vulnerability, it is a fairly standard traffic
capture and replay attack that, given access to the transmission medium, should be straightforward to
conduct with Wireshark. Therefore, we select the “PoC” branch and then ask about exposure. This
considers the (fictional) applier scenario blurb and the notional deployment of the affected system, as
follows.
• Scenario blurb. We are a hospital that uses Medtronic devices frequently because of their quality

and popularity in the market. We give these devices out to clients who need to monitor and track
their insulin intake. If clients need to access data on their device, they can physically connect it to
their computer or connect via Bluetooth to an app on their phone for monitoring capabilities. Oc-
casionally, clients who use this device will have a doctor’s appointment in which the doctors have
machines that can access the device as well to monitor or change settings. It is unknown how se-
cure the doctor’s computer that interfaces directly with this insulin pump is. If the doctor’s com-
puter is compromised, it potentially means that every device that connects to it is compromised as
well. If an update to the insulin pump is required, a client can do this on their own through their
computer or app or through a doctor while they are on-site at the hospital.

• Deployment of affected system. These pumps are attached directly to the client. If an update is
required, the client is permitted to do that through their own computer or app. However, we have
not provided them with documentation on properly using their computer or app to securely access
their device. This is done for convenience so that if the user needs to change something quickly,
they can. They also can also come to us (hospital) for a change in their device’s settings for dos-
age etc. The doctor’s computer that directly handles interfacing with these devices is only con-
nected to the intranet for the purpose of updating the client’s settings on the device. Doctors au-
thenticate with ID badge and password.

Exposure is less straightforward than exploitation. The option “unavoidable” is clearly ruled out.
However, it is not clear whether the optional Bluetooth connection between the medical device and a
phone app represents “controlled” or “small” exposure. The description does not explicitly handle the
capture/replay aspect of the vulnerability. If the only way to exploit the vulnerability is to be within
physical transmission range of the device, then that physical constraint argues for exposure being

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

“small.” However, if the client’s phone app could be used to capture and replay attack packets, then
unless that app is particularly well secured, the answer should be “controlled.” Regardless, the answer
is not clear from the supplied information. Furthermore, if this fictional app is specific to the insulin
pump, then even if it is not compromised, the attack might use its installation to remotely identify tar-
gets. However, since most of the hospital’s clients have not installed the app, and for nearly all cases,
physical proximity to the device is necessary; therefore, we select “small” and move on to ask about
mission impact.

According to the fictional pilot scenario, “Our mission dictates that the first and foremost priority is to
contribute to human welfare and to uphold the Hippocratic oath (do no harm).” The continuity of op-
erations planning for a hospital is complex, with many MEFs. However, even from this abstract, it
seems clear that “do no harm” is at risk due to this vulnerability. A mission essential function to that
mission is each of the various medical devices works as expected, or at least if a device fails, it cannot
actively be used to inflict harm. Unsolicited insulin delivery would mean that MEF “fails for a period
of time longer than acceptable,” matching the description of MEF failure. The question is then
whether the whole mission fails, which does not seem to be the case. The recovery of MEF function-
ing is not affected, and most MEFs (the emergency services, surgery, oncology, administration, etc.)
would be unaffected. Therefore, we select “MEF failure” and move on to ask about safety impact.

Given the prior three answers (PoC, small, MEF failure), the safety analysis is somewhat constrained.
If the result is none, minor, or major, the priority is scheduled. Hazardous will lead to out-of-band, and
catastrophic to immediate action. In the pilot study, this information is conveyed as follows:
• Use of the cyber-physical system. Insulin pumps are used to regulate blood glucose levels in dia-

betics. Diabetes is extremely common in the US. Misregulation of glucose can cause a variety of
problems. Minor misregulation causes confusion or difficulty concentrating. Long-term minor
mismanagement causes weigh management issues and blindness. Severe acute mismanagement
can lead unconsciousness in a matter of minutes and death in a matter of hours. The impacted in-
sulin pumps have a local (on-patient) wireless control, so wires to the pump do not have to be
connected to the patient's control of the system, making the system lighter and less prone to be
ripped out.

The closest match to “death in a matter of hours” would be hazardous because that description reads
“serious or fatal injuries, where fatalities are plausibly preventable via emergency services or other
measures.” Depending on the details of the hospital’s contingency plans and its monitoring of their
patients, the safety impact could be catastrophic. If there is no way to tell whether the insulin pumps
are misbehaving, for example, then exploitation could go on for some time, leading to a catastrophic
safety impact. The pilot information is inadequate in this regard, which is the likely source of disa-
greement about safety impact in Table 13. For the purposes of this example, imagine that after gather-
ing that information, the monitoring situation is adequate, and select “hazardous.” Therefore, mitigate
this vulnerability out-of-band, meaning that it should be addressed quickly, ahead of the usual update
and patch cycle.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

7 Future Work

We intend SSVC to offer a workable baseline from which to improve and refine a vulnerability-priori-
tization methodology. While the method herein should be functional, we do not claim it is ready for
use as is. Therefore, we lay out some aspects of future work that would help make it ready to use. We
focus on further requirements gathering, further testing of the reliability of the decision process, and
expanding to additional types of stakeholders beyond patch appliers and patch developers.

7.1 Requirements Gathering via Sociological Research

The community should know what users of a vulnerability prioritization system want. To explore their
needs, it’s important to understand how people actually use CVSS and what they think it tells them. In
general, such empirical, grounded evidence about what practitioners and decision makers want from
vulnerability scoring is lacking. We have based this paper’s methodology on multiple decades of pro-
fessional experience and myriad informal conversations with practitioners. Such evidence is not a bad
place to start, but it does not lend itself to examination and validation by others. The purpose of under-
standing practitioner expectations is to inform what a vulnerability-prioritization methodology should
actually provide by matching it to what people want or expect. The method this future work should
take is long-form, structured interviews. We do not expect anyone to have access to enough consum-
ers of CVSS to get statistically valid results out of a short survey, nor to pilot a long survey.

7.2 Further Decision Tree Testing

More testing with diverse analysts is necessary before the decision trees are reliable. In this context,
reliable means that two analysts, given the same vulnerability description and decision process de-
scription, will reach the same decision. Such reliability is important if scores and priorities are going
to be useful. If they are not reliable, they will vary widely over time and among analysts. Such varia-
bility makes it impossible to tell whether a difference in scores is really due to one vulnerability being
higher priority than other.

The pilot study provides a methodology for measuring and evaluating reliability of the decision pro-
cess description based on the agreement measure k. This study methodology should be repeated with
different analyst groups, from different sectors and with different experience, feeding the results into
changes in the decision process description until the agreement measure is adequately close to 1.

7.3 Decision Tree for Vulnerability Coordination

Currently, only two stakeholders are addressed: patch appliers and patch developers. Expanding the
work to include more types of stakeholders would be beneficial. We propose that the next stakeholder
group could be vulnerability coordinators, as described in Section 4.1. The development and testing
methodology for any new stakeholder group should be roughly the same as that used to draft the ap-
plier and developer decision trees.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

8 Limitations

Even as a working proposal, SSVC has some limitations. These are inherent limits of the approach,
which should be understood as tradeoffs. There are other limiting aspects of our implementation, but
those have been covered as topics that need improvement and are described in Section 7.

We made two important tradeoffs compared to the current state of the practice with CVSS:
1. We eliminated numerical scores; this may make some practitioners uncomfortable. We explained

the reasons for this in depth, but even though CVSS contains false precision, we still must con-
tend with the fact that, psychologically, users find that comforting. As this comfort gap may neg-
atively impact adoption, this fact is a limitation. Although it is ungainly, it would be sound to
convert the priority outcomes to numbers at the end of the process, if existing processes require
it. Which numbers we choose to convert to is immaterial, as long as the ordering is preserved.
CVSS has set a precedent that higher numbers are worse, so a scale [1, 2, 3, 4] would work, with
defer = 1 and immediate = 4. However, if it were important to maintain backwards compatibility
to the CVSS range zero to ten, we could just as well relabel outcomes as [2, 5.5, 8, 9.5] for the
midpoints of the current CVSS severity ranges.

2. We incorporated a wider variety of inputs from contexts beyond the affected component. Some
organizations are not prepared or configured to reliably produce such data (e.g., around mission
impact or safety impact). There is adequate guidance for how to elicit and curate this type infor-
mation from various risk management frameworks, including OCTAVE.47 Not every organiza-
tion is going to have sufficiently mature risk management functions to apply SSVC.

This limitation should be approached with two strategies: (1) organizations should be encouraged
and enabled to mature their risk management capabilities and, in the meantime, (2) organizations
such as NIST could consider developing default advice. The most practical framing of this ap-
proach might be for the NIST NVD to produce scores from the perspective of a new stake-
holder—something like “national security” or “public well-being” that is explicitly a sort of de-
fault advice for otherwise uninformed organizations that can then explicitly account for national
priorities, such as critical infrastructure.

47 Caralli, Richard; Stevens, James; Young, Lisa; & Wilson, William. Introducing OCTAVE Allegro: Improving the Infor-

mation Security Risk Assessment Process. CMU/SEI-2007-TR-012. Software Engineering Institute. Carnegie Mellon
University. 2007. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8419

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

9 Conclusion

We presented a working hypothesis for how patch developers and patch appliers should prioritize their
effort to mitigate different vulnerabilities. We have performed an initial pilot evaluation of the pro-
posal and improved it, but the process we developed for evaluation is more important than the results.
We invite further refinement of the prioritization mechanism. Further testing will be required before
SSVC is ready for operational use. We endeavored to be transparent about our process and provide
justification for design decisions.

We invite questions, comments, and further community refinement in moving forward with a transpar-
ent and justified vulnerability prioritization methodology that is inclusive for the various stakeholders
and industries that develop and use information and computer technology.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
Distribution Statement A: Approved for Public Release; Distribution Is Unlimited

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412/268.5800 | 888.201.4479
Web: www.sei.cmu.edu
Email: info@sei.cmu.edu

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and develop-
ment center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Soft-
ware Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Cop-
yright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT Coordination Center® and OCTAVE® are registered in the U.S. Patent and Trademark Office by Carne-
gie Mellon University.

DM19-1222

