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Abstract 

Cloud services providers (CSPs) practice security-induced lock-in when employing cryptography 

and tamper-resistance to limit the portability and interoperability of users’ data and applications. 

CSPs’ security-induced lock-in and users’ anti-lock-in strategies intersect within the context of 

platform competition. Given imperfect lock-in, a leader-follower pricing framework achieves a 

Pareto-improvement for CSPs relative to Nash equilibrium prices. This presents a coordination 

problem as the follower’s increase in welfare exceeds that of the leader. By contrast, instituting 

or enhancing security-induced lock-in creates both a Pareto-improvement and first-mover 

advantage. CSPs therefore favor security-induced lock-in over price leadership. Consequently, 

standardization of semantics, technologies, and interfaces is a nonstarter for CSPs. Users’ anti-

lock-in strategies are discussed as a means to circumvent security-induced lock-in.



1. Introduction 

Cloud services providers (CSPs) convert users’ fixed IT costs into variable ones through a pay-

as-you go system that is finely granular and readily available. For SMEs and start-ups, cloud 

benefits include increased availability and mobility, and on-demand capacity and scalability, 

thereby reducing entry barriers. Larger users can also fully capitalize on the cloud’s potential for 

ubiquity and increased collaboration. The cloud services stack is divided into Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), with the 

complexity and integration of the relationship between the CSP and user increasing from IaaS to 

PaaS to SaaS.  

 Owing to the presence of large fixed costs stemming from substantial capacity requirements 

(e.g. server farms); low (effectively, zero) marginal costs from virtualization; and the 

commodification of services at any given layer in the stack, public CSPs have properties akin to 

public utilities. The analogy does not quite fit, however, as cloud semantics, technologies, and 

interfaces are not standardized across CSPs. Cloud computing is not a simple matter of plug and 

play. In addition, lack of standardization across CSPs raises current and prospective users’ 

antennae to lock-in barriers to switching. 

 Formally, the vendor lock-in problem in cloud computing exists when users’ dependency 

upon their CSP’s proprietary configurations creates switching costs limiting their business 

opportunities. To wit, 

The lock-in situation is evident in that applications developed for specific cloud 
platforms (e.g. Amazon EC2, Microsoft Azure), cannot easily be migrated to 
other cloud platforms and users become vulnerable to any changes made by their 
providers … The degree to which lock-in critically affects an organization’s 
business application and operation in the cloud cannot be overemphasized or 
underestimated (Opara-Martins, Sahandi, and Tian 2016, pp.2, 8). 

  
CSP lock-in stems from users’ lack of portability and interoperability. Portability refers to the 

degree data and applications are in a compatible format, giving users the ability to migrate to an 

alternative CSP and do so with minimal effort. Portability includes the means to verifiably 

remove and delete data housed in a CSP (Hogan, Sokol, Liu, and Tong 2011). Interoperability 

refers to users’ ability to exchange assets seamlessly across CSPs (inter-operate) (Pectu 2011).  

 This study recognizes the paramount nature of data as a business asset. Its focus is on data 

lock-in arising from CSP users’ difficulties in both migrating data and doing so without disrupting 

its availability. “Data lock-in is the main obstacle to the achievement of portability and 
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interoperability” (Subramanian and Jevaraj 2019, p.38). It has implications for users’ business 

continuity and disaster recovery planning (Knipp, Clayton, and Watson 2016). If a CSP fails for 

economic or financial reasons, organizational data may be unrecoverable or access to it delayed. 

Moreover, no CSP is 100% reliable. Businesses locked into a CSP are vulnerable to downtime. 

 Lock-in is a vulnerability rather than a threat. It is a security issue because CSPs store data in 

a proprietary way. The origin of many CSPs stems from employing excess capacity used to 

support their firm’s primary business, such as servers for AWS, or the ability to scale at or near 

zero marginal cost, as is the case for SaaS. Consequently, no early opportunity or interest existed 

for anticipatory standardization at the industry level à la Bluetooth (Uotila, Keil, and Maula 2017) 

or a collective response to an existential threat such as creating the Extended Industry Standard 

for PCs as an alternative to IMB’s PS/2 Micro Channel (Canion 2013).  

 Anderson (2001, 2004) contends that lock-in encourages IT platforms to add security 

benefiting themselves rather than users. Adding security mechanisms such as cryptography and 

tamper-resistance controls compatibility. Lock-in creates the incentive to raise security to 

address a platform’s vulnerability to challengers creating compatible products, rather than 

address the threat of malicious outsiders or insiders. “Sometimes security solutions might be 

focused on other objectives than security, for instance, on achieving consumer lock-in” (Asghari, 

van Eeten, and Bauer 2016, p.269). Following Opara-Martins, Sahandi and Tian (2016, p.2), “it 

can be concluded that cloud interoperability (and data portability) constraints are potentially 

results of an anticompetitive environment created by offering services with proprietary 

standards.” Lookabough and Sicker (2004) call this security-induced lock-in. Security-induced 

lock-in is a variation on Young and Yung’s (1996) classic theme that cryptography can be used 

to lower users’ security by maintaining control over a critical resource. 

 This paper investigates security-induced lock-in within the context of CSP platform 

competition. The term platform competition comes from the economics of two-sided markets; it 

applies equally to IaaS and SaaS in addition to PaaS. As lock-in is a competitive phenomenon it 

makes sense to investigate lock-in within CSPs’ competitive environment. Indeed, when 

characterizing CSP cybersecurity within the context of platform competition, Arce (2020) shows 

that cybersecurity both determines a CSP’s competitive environment (e.g. monopolistic versus 

imperfectly competitive) and is determined by the competitive environment. He calls this 

cybersecurity symbiosis. This provides context for the current analysis.  

 Security-induced lock-in is a form of IT investment designed to create a strategic advantage 
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for CSPs with respect to their users. Indeed, Guo and Ma (2018) recognize that switching costs 

create room for market segmentation in IT services. Alternatively, Barua, Kriebel, and 

Mukhopadhyay (1991) examine strategic IT investment for securing a competitive advantage by 

improving users’ quality of service. They focus on the non-price implications of combining 

services as a means to strategically increase quality. By contrast, lock-in investments create pricing 

power and data access barriers that are detrimental to users. The strategic consideration of lock-in 

introduces a no-switching constraint not present in Guo and Ma (2018) or Barua, Kriebel, and 

Mukhopadhyay (1991). Another difference is security-induced lock-in stems from cryptography 

and tamper-resistance. Moreover, users are not passive with respect to the effects of lock-in; they 

both anticipate the effect of lock-in on future prices and implement anti-lock-in strategies. An 

example of an anti-lock-in strategy is a hybrid cloud where organizationally critical data is kept in-

house by the user. 

 This research considers a 2-CSP game of pricing competition and lock-in where users also 

determine the degree of lock-in via anti-lock-in strategies. At the same time, data lock-in is 

modeled similarly to how CSP security and vulnerability to malicious threats are modeled (e.g. 

Gordon and Loeb 2002, Ruan 2017, and Arce 2018), in that CSP competition and users’ anti-

lock-in strategies co-determine the probability of access to data (Razavian et al 2013). The 

presence of users’ anti-lock-in strategies implies that lock-in is neither complete, as is usually the 

case in models of lock-in, nor completely absent, as is the case for users that do not adopt a CSP 

for fear of lock-in. CSP pricing strategies, lock-in strategies, and users’ switching costs and anti-

lock-in strategies are all characterized under the auspices of CSP platform competition. 

 The resulting game differs from prior treatments of lock-in because lock-in is security-induced 

and determined endogenously by users’ anti-lock-in strategies and platform competition between 

CSPs. Under such circumstances the CSPs’ prices are strategic complements. Yet they are 

inefficient relative to the welfare-maximizing prices for the CSPs. A Pareto-improvement is 

possible via leadership (in the Stackelberg sense), rather than requiring explicit or tacit 

cooperation. A coordination problem occurs, however, as the follower benefits more than the 

leader; i.e. a second-mover advantage occurs in CSP pricing. Alternatively, a Pareto-improvement 

and a first-mover advantage occur when CSPs increase their levels of security-induced lock-in. 

Consequently, standardization is a non-starter for CSPs.  
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2. The Nature of CSP Lock-In 

There is widespread recognition of lock-in in the cloud, however, few models address it head on. 

Klemperer (1995) provides an overview of the general economic literature surrounding lock-in 

and switching costs. Complementary surveys include Padilla (1991), Chen and Hitt (2006), 

Farrell and Klemperer (2007), and Villas-Boas (2015). Shapiro and Varian (1999) and Varian 

(2004) remain remarkably relevant and prescient on the intersection of lock-in, switching costs, 

and information technology. Lookabough and Sicker (2004) discuss four categories of security-

induced lock-in: propriety security protocols; open security protocols; proprietary extensions to 

open security protocols; and intellectual property rights and other legal constructs.  

 Klemperer’s (1995) switching costs categories provide a backdrop for the game-theoretic 

analysis of CSP platform competition to follow. 

 
Market Power. Users endow CSPs with quasi-monopoly power. Recognizing this, users fear the 

well-known bargain-then-rip-offs phenomenon associated with vendor-user relationships in the 

presence of lock-in. CSPs attempt to allay users’ fears with future price commitments. The 

problem with the pay-as-you-go nature of CSPs is that focusing on price allows for the user-CSP 

value proposition to become a little bit pregnant in the presence of price commitments. CSPs 

introduce fees as a form of cost-of-service-creep; implement a razors-and-blades strategy with 

respect to add-on services and components; and also vary quality of service in ways that users 

may be unable to detect. The effects are similar to CSPs practicing a form of price discrimination 

between new and locked-in users. The end result is akin to a CSP’s inability to commit beyond its 

initial price at the time of adoption, with this being our modeling strategy. 

 Lock-in increases CSPs’ pricing power. But users are not passive observers to the process; 

they act strategically to minimize its effects: 

You compete at your own peril if you do not recognize lock-in and protect 
yourself from its adverse effects, and use it to your advantage when possible. … 
The way to win in markets with switching costs is neither to avoid lock-in nor to 
embrace it. You need to think strategically: look ahead and reason back (Shapiro 
and Varian 1999, pp. 104, 111).  
 

Foresighted users carefully balance the tradeoff between the benefits of lock-in; e.g. more 

powerful implementation when the CSP couples tightly with the user’s business requirements, 

with the costs, which are most closely associated with increasing prices over time.  
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Competitive Strategy. CSPs have the technical means to stifle competition via proprietary 

semantics, technologies, and interfaces. The potential for higher prices and profits implies CSPs 

strategically invest in switching costs, thereby making them endogenous. Anderson (2001, 2004) 

recasts the practice as a form of security investment that reduces an IT platform’s vulnerability to 

switching, but diverts the platform’s security away from that meant to address malicious threats. 

This is known as security-induced lock-in (Lookabough and Sicker 2004), and its use as a 

competitive strategy is our focus.  

 
Learning Costs. CSP switching costs also arise due to learning effects. It takes time for a user’s 

employees to learn the proprietary aspects of their CSP. Any time required to learn the 

proprietary aspects of the next best alternative CSP is a switching cost. Shapiro and Varian 

(1999) regard the total switching costs of locked-in users as the value of an IT platform’s 

installed base. As users’ experience with their CSP increases, their benefits grow and become 

specific to the CSP. Switching to a rival reduces users’ benefits in addition to other switching 

costs, such as data migration. Here, in the first period users choose between two competing CSPs 

with similar first-period benefits. In the second period, however, the benefits of their adopted 

CSP are larger due to learning effects. 

 
Network Effects. Network effects (network externalities) occur when the benefits of using a CSP 

rise with the number of users of the CSP. Opara-Martins, Sahandi, and Tian (2016) find that 

organizations with 250+ employees realize significant benefits from increased collaboration 

through CSPs. Consequently, network effects can work against switching CSPs. When network 

effects are present, users’ switching costs are endogenous. Hence, CSPs face a no-switching 

constraint (Lee 2014, Arce 2020). The equilibria here satisfy no-switching constraints.  

 

3. The Model 

The discussion thus far substantiates the need for a model of CSP pricing and security-induced 

lock-in within the context of platform competition. Such a model requires no-switching 

constraints for users; switching costs reflecting users’ learning effects with their CSP; lock-in 

strategies by CSPs in platform competition; and users adopting anti-lock-in strategies to keep 

their CSP options open. This section introduces such a model as an extensive form game.  
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Table 1: Notation for the Security-Induced Lock-In Game 

Parameter Description 

 1 2,i iP P  Pricing strategy for CSP ‘i’ in the first and second periods, i = 1, 2. 

N  Total number of users. 

 11 21,n P P  Number of users of CSP 1. 

  11 21,N n P P  Number of users of CSP 2. 

V  A user’s first period reservation value for CSP services, 0.V   

 ,iV V   Reservation value for users of CSP i = 1, 2 in the second period.  

iFC  Fixed cost for CSP ‘i.’ Owing to virtualization, variable costs are negligible. 

 0,1i   Probability that users of CSP ‘i’ can access their data if switching to CSP j. 
   
 The players are the two CSPs and N users. CSP i’s strategies are its prices in the first and 

second periods,  1 2, ,i iP P i = 1, 2. In addition, CSP i’s lock-in strategy partially determines :i  its 

users’ degree of data access if switching CSPs. Given the pair of first-period prices,  11 21, ,P P the 

number of CSP 1 users is  11 21, ,n P P and the number of CSP 2 users is its complement,

 11 21, .N n P P  Two standard assumptions about  11 21,n P P are made: (i)  11 21,n P P is twice-

differentiable over all its arguments, and (ii) if both CSP’s second-period prices, 12 22and ,P P satisfy 

no-switching constraints, then    11 21 11 21, and ,n P P N n P P carry over to the second period.  

 When first-period users carry over to the second period, the CSPs’ payoffs are: 

       1 11 21 11 11 21 12 1 2 11 21 21 11 21 22 2, , ; , , .n P P P n P P P FC N n P P P N n P P P FC                 

CSP i’s payoff is the sum of its first and second period revenues less its fixed costs, .iFC  Variable 

costs are negligible under virtualization. No discounting occurs for users or CSPs. In multi-period 

pricing games with switching costs, discount factors are used as a proxy for how forward-looking 

(price sensitive) users are to the platform strategy of enticing users with a low first-period price 

followed by a higher second-period price when users are locked in. Forward-looking users 

recognize this potentiality and are less price sensitive in the first period. Platforms recognize user’s 

price insensitivity, consequently, first-period prices are higher when users are forward-looking. 

Discounting is replaced by the probability of data access, ,i which is an alternative forward-looking 

phenomenon. The difference being, in contrast to discounting, which is an exogenous preference, i

is co-determined by users’ anti-lock-in strategies and platform competition between CSPs.  
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 Users’ select a CSP in the first period and decide whether to continue with the CSP in the 

second period. In addition, users partially determine their degree of data access, ,i when 

switching CSPs. Users’ anti-lock-in strategies include keeping proprietary data in-house, 

resulting in a hybrid cloud; using a CSP broker; or contractually obligating their CSP to provide 

the data in an agreed upon format upon exit. Opting for a CSP with standard interfaces and APIs 

or one employing standard open security protocols are also possibilities. Another tactic is 

spreading data over multiple CSPs, perhaps by using erasure coding (Razavian et al 2013), as a 

user version of defense-in-depth (Anderson 2001). Such strategies increase .i    

 Users’ payoffs are the sum of their net benefits in each period (again, no discounting). A 

user adopting CSP ‘i’ in period 1 obtains net benefit 1.iV P  The absence of an index on users’ 

initial reservation value, V, of their CSP is intentional. Users’ impetus for adopting a CSP is to 

transform fixed IT capital expenses into pay-as-you-go variable operating costs. Such savings are 

initially the same irrespective of the CSP adopted.  

 A user continuing with their CSP in the second period receives net benefit 2 ,i iV P where 

 , .iV V   Specifying iV V is consistent with accruing learning effects when continuing with 

a CSP. A subtle but important point is that a user who switches CSPs in period 2 accrues benefit 

V because no learning effect carries over. Switching users also pay the lower first-period price 

charged by their newly adopted CSP, 1.jP  In other words, 

user i’s second-period expected payoff =  
2

1

,  if continues with CSP ;

,  if switches to CSP ,

i i

i j

V P i

V P j i


  

 

The result is a dynamic not commonly present in models of lock-in. The dynamic captures users’ 

learning effect when continuing with a CSP, an advantage of lock-in. 

 The timing of the game reflects the above description. The game consists of three stages. In 

the first period CSPs set initial prices and users decide which CSP to adopt. CSPs again set prices 

in the second period and users decide whether to continue with their CSP or to switch. Following 

Klemperer (1995), endogenizing switching costs requires adding an initial (‘zeroth’) period for 

determining the degree of lock-in. A major difference between the present analysis and other 

analyses of endogenous switching costs is that switching cost manipulation is typically considered 

to be the purview of firms alone (Salies 2012). The contribution here is (i) users employ anti-lock-

in strategies; (ii) lock-in takes an alternative form because it is security-induced; and (iii) switching 



8 
 
constraints incorporate learning effects. Finally, in allowing for Shapiro and Varian’s (1999) 

principle that, the potential for lock-in necessitates that participants look ahead and reason back, 

the solution concept used is subgame perfect Nash equilibrium (SPNE).  

 

4. Benchmark Scenario: Platform Competition when Users are Locked-In  

In the benchmark situation users are locked into their CSP in the second period. Compared to the 

general game, 0, 1, 2.i i    No zeroth period occurs. Variables in this section have an overbar 

to distinguish them from the general case.  

 Solving the game by SPNE means that the second period is solved first. As in the first 

period a CSP cannot commit to a price in the second period, in the second period each CSP sets 

its price to maximize its revenue subject to a participation constraint for its users. For CSP 1:  

 
12

11 21 12 12 1

users' participation
constraint

max , . . .
P

n P P P s t P V   

Lock-in implies  11 21,n P P carries over to period 2. This yields 12 1.P V  

 In the first period CSP 1 selects 11P  to maximize 1 11 12     : 

       
11 11

11 21 11 11 21 12 1 11 21 11 11 21 1 1max , , max , ,
P P

n P P P n P P P FC n P P P n P P V FC          

Suppressing the arguments in  11 21, ,n P P CSP 1’s first order condition is: 

(1)  1
11 1 11 1

11 11 11 11

0 .
n n n

P n V n P V
P P P P

   
          

   
 

For this to make sense  0n  requires 
11

0;
n

P





i.e. the number of users satisfies the law of 

demand. From the characterization of n given by Eq. (1): 

(2)    
2 2

11 1 11 12 2
11 11 11 11 11

1
.

2

n n n n n
P V P V

P P P P P

    
          

    
 

 It follows that 
11

0
n

P





 requires 

2

2
11

0.
n

P





 User demand is convex. Furthermore, a user’s 

first-period elasticity of demand is: 

   11

11 11

11 11 21 11 1

.
.

n
P

P Pn

P n P P P V
 

  
 
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A user’s first-period price elasticity is inelastic  
11

1 .n
P   Price insensitivity is due to users 

looking ahead and reasoning back, keeping them from being duped by a low first-period price.  

 Finally, if no learning effects are present, then 1 2 .V V V   Price competition without product 

differentiation ensures neither CSP makes excess profits: 

     , , 0 .
,

i
i i j i i j i i

i j

FC
n P P P n P P V FC P V

n P P
         

A CSP’s first-period price equals its average fixed cost less its second-period revenue.  

 

5. Imperfect Data Lock-In 

Here, the general game where  0,1i  is solved. Backward induction implies the second period 

is solved first. Once again, in the first period the CSP cannot commit to a price in the second 

period. Each CSP sets its second-period price subject to a no-switching constraint for users. The 

no-switching constraint accounts for the probability, ,i of a user accessing its data to switch 

CSPs. In addition, the no-switching constraint supersedes the need for a participation constraint 

for users. CSP 1’s pricing problem becomes:  

   
12

11 21 12 1 21 1 12

no-switching constraint

max , . . .
P

n P P P s t V P V P     

If CSP 1 users switch to CSP 2 the associated benefit is V and not 2V  because no learning effect 

occurs for the new CSP. Moreover, users pay 21P rather than 22P because they are in their first 

period with CSP 2. Satisfying the no-switching constraint implies that  11 21,n P P carries over to 

period 2. Solving the no-switching constraint for 12P yields: 

 12 1 1 21 .P V V P    

A similar no-switching constraint for CSP 2 yields 22 :P  

 22 2 2 11 .P V V P    

When 1 2, 0,   the benchmark condition, 2 ,i iP V is satisfied. Otherwise, second-period prices 

are lower under imperfect lock-in,  1 2, 0,1 .    

5.1 First-Period Best Replies 

 The two-period profit functions for each CSP are: 
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   1 11 21 11 11 21 12 1, ,n P P P n P P P FC       

     2 11 21 21 11 21 22 2, ,N n P P P N n P P P FC       

Substituting in the solutions for second-period prices, 12P and 22 :P  

     1 11 21 11 11 21 1 1 21 1, ,n P P P n P P V V P FC           

       2 11 21 21 11 21 2 2 11 2, ,N n P P P N n P P V V P FC           

The first-order condition for CSP 1 is: 

 1
11 1 1 21

11 11 11

0.
n n

P n V V P
P P P

  
           

 

CSP 1’s best reply function is an implicit function,  1 11 21 1, , :F P P   

(3)    1 11 21 1 11 1 1 21
11

, , 0
n

F P P n P V V P
P

 
        

 

The number of CSP 1 users is: 

(4)  11 1 1 21
11

n
n P V V P

P


       
 

Where n > 0 again requires 
11

0.
n

P





 The number of CSP 1 users decreases in the CSP’s first-

period price. Furthermore, for the inequality to hold, by the characterization of n in Eq. (4): 

   
2 2

11 1 1 21 11 1 1 212 2
11 11 11 11 11

1
,

2

n n n n n
P V V P P V V P

P P P P P
     

                       
 

which, to be negative, again requires 
2

2
11

0.
n

P





 

 CSP 2’s first-order condition is: 

   2
21 2 2 11

21 21 21

0.
n n

P N n V V P
P P P

  
           

 

The following implicit function characterizes CSP 2’s best reply function:  

(5)    2 11 21 2 21 2 2 11
21

, , 0.
n

F P P N n P V V P
P

 
        

 

The number of CSP 2 users is: 

(6)  21 2 2 11
21

.
n

N n P V V P
P


       
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Where
21

0 0;
n

N n
P


   


 i.e. the number of CSP 1 users increases in CSP 2’s first-period price. 

The two CSPs are substitutes. For the inequality to hold, by the characterization of n in Eq. (4): 

 

   

 
 

2

1 11 1 1 21
21 11 11 21

?

0.
n n n

P V V P
P P P P

 






  
              

 

In order to sign
2

11 21

,
n

P P


 

first recognize that 
2 2

11 21 21 11

.
n n

P P P P

 


   
 From Eq. (4), 1

21 11

.
n n

P P
 

  
 

 

This implies 
 


 


2 2 2

1 2
21 11 11 11 21

0.
n n n

P P P P P





  
    

    
 Hence, 

21

0.
n

P





 

 Finally, a user’s first-period price elasticity is: 

 
   11

11 12 11 11

11 11 12 11 1 1 21

,
,

,
n
P

n P P P P

P n P P P V V P





  
     

 

which again is inelastic. First-period inelasticity at the user level is usually an assumption in 

technology adoption and switching cost models (e.g. Katz and Shapiro 1992, Klemperer 1995). 

Here it is an output of the model. 

 

5.2 First-Period Nash Prices 

 The first-order conditions characterize a CSP’s best reply function as an implicit function.1 

In what follows the majority of the derivations are done for CSP 1 with the understanding that 

similar derivations hold for CSP 2. Applying the implicit function theorem to CSP 1’s best reply 

function, 1,F in Eq. (3):  

 

 1

2

1 1 11 1 1 21
11 21 21 11 11 21

2
121

11 1 1 21211
11 11 11

.
F

n n nF P V V P
dP P P P P P

F n n ndP
P V V PP P P P

 



              
   

   
         

 

Simplifying, multiplying the denominator by the coefficient -1, and signing known terms: 

                                                 
1 Stability of the equilibrium – in the Nash/best reply sense – requires that the slope of CSP 1’s best reply function 
exceeds that of CSP 2’s best reply function. The left-hand panel of Figure 1 illustrates this. If CSP 1’s price is

11
ˆ ,P the 

resulting sequence of best replies, shown by the arrows, leads to the Nash equilibrium. Related to this, the second-
order conditions are given in the appendix. 
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   

 
 

 

 
 

 


 
 

1

2

1 11 1 1 21
11 21 11 11 21

2
21

11 1 1 212
11

0.
F

n n n
P V V P

dP P P P P

ndP
P V V P

P

 











            
 

     


 



 

When 
1

11

21

0 ,
F

dP

dP
 first period prices 11P  and 21P are strategic complements. If one CSP increases 

(decreases) its first-period price the other CSP’s best reply is to increase (decrease) its price as 

well.2 First-period prices are also plain complements (Eaton and Eswaran 2002). That is, 

1

21

0
P





because

21

0;
n

P





and 2

11

0
P





because

11

0.
n

P





 

 The left-hand panel of Figure 1 illustrates this outcome. Best reply functions 1F and 2F are 

upward sloping because the CSP’s first-period prices are strategic complements. The point of 

intersection is the Nash equilibrium. 1 and 2 are the isopayoff (level) curves for each CSP. By 

definition, at each point on a CSP’s best reply function its isopayoff curve must be tangent to a line 

corresponding to the strategy of the other player (denoting the maximum payoff, ,i given 1).jP  

Plain complements mean that CSP 1’s isopayoff curves increase in value as 21P increases and CSP 

2’s isopayoff curves increase in value as 11P  increases. Any strategy combination in the northeast 

lens of 1 and 2 is a Pareto-improvement. Both prices are higher in this event.  

 
Result 1. The CSP’s first-period prices are strategic complements. Nash prices are lower than 

(i) the prices under perfect lock-in, and (ii) the Pareto-efficient prices under CSP cooperation.  

 
This begs the question whether CSPs can achieve a Pareto-improvement. 

5.3 First-Period Stackelberg Prices 

 In a Stackelberg or leader-follower game, the leader commits to a strategy and the follower 

plays its best reply to that strategy. Stackelberg games naturally arise in situations with a 

dominant market leader, such as AWS and IaaS. Alternatively, in an infinitely-repeated game if a 

CSP is established enough be considered a long-run player, with a commensurately large discount 

                                                 
2 Strategic complements has nothing to do with whether users view the associated goods as complements (e.g. apps 
and CSPs) or substitutes (e.g. CSPs in a given layer of the cloud stack). 
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factor, then the CSP can achieve a payoff arbitrarily close to the one generated by its Stackelberg 

strategy, provided it faces a short-run player in each period (Fudenberg and Levine 1992). An 

entrant is an example of a short-run player. Entry is a single-period event; hence, at any point in 

time the entrant for that period plays what they consider their best reply to the long-run player’s 

strategy. This justifies a potential costly investment in reputation in terms of a transitory payoff 

for the Stackelberg strategy against a short-run player’s strategy that may not be a best reply to 

the Stackelberg strategy. Ultimately, investing in the reputation of the Stackelberg strategy causes 

short-run players to play their best reply to the Stackelberg strategy. By this process, the 

Stackelberg outcome for the stage game becomes a Nash equilibrium payoff for the infinitely-

repeated game. The interpretation of Stackelberg equilibrium that applies depends upon where a 

CSP lies in the cloud stack. The greater the fixed costs of entry, the less applicable is the repeated 

game interpretation because high entry barriers imply fewer interactions with entrants. 

 In a Stackelberg game with CSP 1 as the leader and CSP 2 as the follower, CSP 2’s payoff 

remains  2 11 21, .P P  By contrast, the leader’s payoff function becomes   1 11 2 11 21, , ,P F P P

where  2 11 21,F P P is the follower’s best reply function given in Eq. (5). In a Stackelberg 

equilibrium CSP 1 maximizes its payoff given the best reply function of CSP 2,  2 11 21, ,F P P

whereas in a Nash equilibrium CSP 1 maximizes its payoff given the strategy of CSP 2, 21.P  

Denoting 12
fP as the follower’s equilibrium strategy and 11

LP as the leader’s equilibrium strategy, 

the first-order conditions for the follower are 

(7)  2
2 11 21

21

, 0.L fF P P
P


 


 

The first-order conditions for the leader are 

(8) 
   1 11 21 1 11 21 21

11 21 11

, ,
0,

L f L fP P P P dP

P P dP

 
  

 
 

where the second term captures the leader maximizing its payoff given that the follower plays its 

best reply to 11 .LP   

 In the right-hand panel of Figure 1 the Stackelberg equilibrium corresponds to the leader’s 

highest isopayoff curve given the follower’s best reply. It is the point of tangency, S, between 

1
L and 2.F  Given that first-period prices are strategic complements, both CSP’s prices increase 
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relative to the Nash equilibrium point, N. That is, 11 0dP  and 21 0.dP   Furthermore, when 

additionally recognizing that first-period prices are pure complements, a second-mover 

advantage exist such that the follower’s payoff increases more than the leader’s: 

   2 11 21 1 11 21, , .L f L fd P P d P P    

 To see this, apply the definition of total derivative to both sides of the inequality: 

       2 11 21 2 11 21 1 11 21 1 11 21

11 21 11 21
11 21 11 21

, , , ,
.

L f L f L f L fP P P P P P P P
dP dP dP dP

P P P P

   
  

   
 

Dividing both sides by 11 0dP  and signing terms: 

 

 

 

   


   

 

2 11 21 2 11 21 1 11 21 1 11 2121 21

11 21 11 11 21 11

0 0

, , , ,
.

L f L f L f L fP P P P P P P PdP dP

P P dP P P dP


   
    

     
 

The first term on the left-hand side is positive because prices are pure complements. For the 

second term, the first term in the product is zero because it corresponds to the follower’s first-

order condition in Eq. (7). Finally, the right-hand side of the inequality is zero because it 

corresponds to the first-order condition for the leader in Eq. (8). 

 
Result 2. Both CSPs are better off if one of them acts as a first mover (in the Stackelberg sense). 

Neither explicit nor tacit cooperation is necessary for a Pareto-improvement. The first-mover 

(Stackelberg leader) is at a disadvantage because their increase in payoff is less than the 

second-mover’s (follower’s). A second-mover advantage exits. 

 
 A Pareto-improvement requires CSPs to solve the coordination problem of determining who 

acts as leader. Alternatively, no coordination problem occurs if the CSP is a long-run concern 

facing potential entrants. The leader instead improves upon its Nash payoff for the stage game by 

achieving its Stackelberg payoff as a Nash equilibrium of the infinitely-repeated game. 

 

6. CSPs Favors Security-Induced Lock-In Over Price 

In the zeroth period, users select their anti-lock-in strategies and CSPs select their security-

induced lock-in strategies. The strategies affect 1 and/or 2 , with users attempting to increase 

their values and CSPs to decrease them. From the first-order conditions in Eqs. (3) and (5), CSP 

1’s best reply function is an implicit function of 1 and CSP 2’s is an implicit function of 2 .  
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 By the implicit function theorem:  

 

 1

1 21
11 1 11

2
11

11 1 1 21211
11 11 11

.
F

nF V P
dP P

F n n nd
P V V PP P P P


 

 
 

   
   

         

 

Simplifying, multiplying the denominator by the coefficient -1, and signing known terms: 

(9) 

 

 

 


 
 

1

0

21
11 11

2
1

11 1 1 212
11

0.
F

n
V P

dP P

nd
P V V P

P
 











 
     





 

By similar methods,  

(10) 
2

21

2

0 .
F

dP

d
   

 The left-hand panel in Figure 2 illustrates the case where a CSP 1 user increases 1.  Given

1

11

1

0 ,
F

dP

d
 CSP 1’s best reply function shifts to 1̂.F  One must recognize, however, that without 

coordination among CSP 1 users, the effect on CSP 1 is only  1 2 11 / , ;n P P d    i.e. the shift is 

much smaller for a single user’s anti-lock-in strategy than it is for a CSP’s lock-in strategy, 

which affects its entire user base. At the new equilibrium the first-period prices decrease for both 

CSPs. The intuition is as follows. CSP 1’s second-period price satisfies the no-switching 

constraint, making demand (the number of users) the same in both periods. At the same time, an 

increase in 1 puts downward pressure on 12.P CSP 1’s revenue over both periods depends upon it 

inducing more adoptions in the first period. It does so by reducing 11.P  In response CSP 2 

decreases 21P because 11P and 21P are strategic complements.  

 Turning to the right-hand panel in Figure 2, when CSP ‘i’ increases lock-in i decreases. By 

the comparative statics in Eqs. (9) and (10), when both CSPs increase lock-in the new best reply 

functions are 1F and 2.F  At the new equilibrium both first-period prices increase. The logic is as 

follows. Increasing lock-in implies that each CSP can raise its second-period price. Users who look 

ahead and reason back realize this, hence, they cannot be duped into adopting a CSP by a low price 

in the first period. Accordingly, both CSPs raise their first-period price. 
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 The right-hand panel in Figure 2 captures novel and important implications of security-

induced lock-in. If either CSP unilaterally increases their degree of security-induced lock-in,

0,id  the equilibrium is in the Pareto-improvement lens of the isopayoff curves for the Nash 

equilibrium. Given strategic complementarity in the first period, both CSPs benefit from either 

introducing or enhancing their security-induced lock-in. If CSP 1 increases 11P via decreasing 1, it 

additionally induces CSP 2 to increase 21P and vice-versa. No such interdependence exists 

between CSP users. Moreover, if both CSPs increase their security-induced lock-in the new 

equilibrium is even further northeast in the Pareto-improvement lens. 

 Finally, if CSP 1 leads by introducing or enhancing its security-induced lock-in, no 

coordination problem occurs if 

   1 11 21 1 2 11 21 2, , , , .d P P d P P         

Totally differentiating each payoff function: 

1 1 1 2 2 1
11 21 1 11 21 2

11 21 1 11 21 2

dP dP d dP dP d
P P P P

 
 

     
          

     
 

By the first-order conditions that derive each CSP’s best reply function, 1 2

11 21

0, 0.
P P

 
 

 
 CSP 

2 is passive, so 2 0.d  The inequality becomes 

1 1 2
21 1 11

21 1 11

dP d dP
P P




  
    

  
 

Recognizing that 1 11 210 , 0d dP dP    (refer to the right-hand panel of Figure 2), and dividing 

through by 1 0,d  yields: 

 
 


 

 


 

 


 

 


 

 


1 1 1 211 11

1 2 11 1 21

1 11 1 21 1

0 0 pure complements pure complements 0 00 0

.

d dPd dP

dP dP

P d P d

 

  
   

        

  
   

  
 

Multiplying both sides by -1: 

(11)  


1 1 21 1 11 2

1 1 21 2 11

1 21 1 11 1

Direct effect Indirect effect Indirect effect
of  on , of  on of  on 

.

P P

dP dP

P d P d



  

  

  
    
   

 

 Increasing a CSP’s degree of lock-in creates direct and indirect effects. The direct effect is it 

is harder for users to switch. The magnitude of the effect on CSP 1’s profits, in absolute terms, is 



17 
 
given in the left-hand side of Eq. (11). The indirect effect is lock-in allows both CSPs to raise 

first-period prices, with the increase in the rival’s price adding to a CSP’s profits because, from 

the user’s perspective, in the first period the CSPs are substitutes. The right-hand side of Eq. (11) 

is the difference between the indirect effect on CSP 1’s profits and that for CSP 2. When the 

inequality is satisfied, no coordination problem arises to inhibit a CSP’s use of security-induced 

lock-in to effect a Pareto improvement. 

 
Result 3. It is Pareto-improving for either CSP (or both CSPs) to increase their degree of security-

induced lock-in. Moreover, under the conditions given in Eq. (11), a first-mover advantage exists. 

That is, no formal or tacit cooperation mechanism is needed to implement a Pareto-improvement 

nor need a coordination problem arise (contrary to the case of Stackelberg pricing). This works in 

favor of security-induced lock-in and against the prospects for standardization in the cloud. From 

the users’ perspective, it highlights the importance of anti-lock-in strategies. 

 
 CSPs need not resort to price leadership and its attenuate coordination problem to achieve a 

Pareto-improvement. An incentive instead exists in the form of a first-mover advantage with 

respect to security-induced lock-in that achieves a Pareto improvement for the CSPs. CSP market 

structure is thus defined by leadership on security-induced lock-in rather than price leadership. 

 

7. Discussion 

Information technology platforms often divert security efforts intended to bolster their platform 

against malicious threats in favor of efforts toward lock-in-via-security as part of the platform’s 

profit strategy (Anderson 2001, 2004). For cloud services providers (CSPs) security-induced lock-in 

decreases the CSPs’ vulnerability to challengers attempting to get users to switch and unlicensed 

complementors’ attempting to market compatible products. Lookabough and Sicker (2004) 

similarly observe that security-induced lock-in allows IT platforms to control potential 

complementors’ access to users, and facilitates razor-and-blades pricing strategies for additional 

services and components. Both studies intimate that security plays a privileged role in lock-in.  

 The privileged role is shown to be a consequence of security-induced lock-in’s effect on 

CSPs’ pricing strategies, particularly since prices are strategic complements. Specifically, CSPs 

face no-switching constraints when choosing their pricing strategies. One way to satisfy the 

constraint is through security-induced lock-in. Moreover, users recognize this potentiality. 

Accordingly, the degree of lock-in is endogenously determined by users’ anti-lock-in strategies 
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and CSPs’ security-induced lock-in strategies. In this context, it is Pareto-improving for CSPs to 

increase their degree of lock-in. This is consistent with Opara-Martins, Sahandi, and Tian’s 

(2016) conjecture that the anticompetitive nature of the CSP market is the result of 

interoperability and data portability constraints stemming from CSPs’ proprietary protocols. 

Indeed, a Pareto-improvement occurs when only one of the CSPs introduces or enhances security-

induced lock-in. Cloud-based standards for semantics, technologies, and interfaces are therefore 

not in the interest of CSPs. 

Moreover, combining users’ anti-lock-in strategies with CSPs’ no-switching constraints 

yields the conditions for security-induced lock-in creating a first-mover advantage. The 

conditions fail if the effect of the first-mover’s price on the second-mover’s profits exceeds that of 

the second-mover’s price on the first-mover’s profits. As a second-mover advantage exists in 

setting price, this is unlikely to be the case.  

The conditions also fail if users’ anti-lock-in strategies sufficiently diminish the first-

mover’s profits. Examples of anti-lock-in strategies include using a hybrid cloud or spreading 

organizationally critical data across CSPs; using a CSP broker; specifying the terms of exit and 

access to data within the service level agreement; adopting a CSP that uses standard interfaces 

and APIs; and adopting a CSP employing standard open security protocols. Unfortunately, CSPs 

have countermeasures. For example, a CSP may implement proprietary security extensions to 

standard security protocols. Or using a broker can result in lock-in with the broker. Overall, it is 

unlikely that users’ anti-lock-in strategies can violate the conditions for a first-mover advantage 

from security-induced lock-in because, whilst CSPs influence lock-in across their user base, a 

user only affects their own degree of lock-in. 

CSP price leadership produces a Pareto improvement but concedes a second-mover 

advantage. By contrast, security-induced lock-in produces both a Pareto improvement and a first-

mover advantage. This provides a clear rationale for security-induced lock-in. In CSP markets, 

however, security-induced lock-in versus malicious threat security is not an easy tradeoff for at 

least two reasons. First, insecurity against malicious threats is a primary motive for switching 

CSPs (Wilms, Stieglitz, and Müller 2018). Second, Arce (2020) demonstrates that security against 

malicious threats is the defining factor determining whether the user side of platform markets are 

winner-take-all or imperfectly competitive. A comprehensive understanding of CSPs, users, and 

market structure ultimately entails combining security-induced lock-in and cybersecurity within a 

single model.   
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Appendix: Second-Order Conditions for the General Model 

Given implicit best reply function  1 11 21 1, , ,F P P  for CSP 1, and implicit best reply function, 

 2 11 21 2, , ,F P P  for CSP 2, define the following: 

   2 2
1 11 21 1 1 11 21 111 11

11 122
11 11 11 21 21

, , , ,
;

F P P F P P
F F

P P P P P

     
   

    
 

   2 2
2 11 21 2 2 11 21 121 21

22 212
21 21 2 1 1

, , , ,
;

F P P F P P
F F

P P P P P

     
   

    
 

In contrast to the notation up until this point, where the first subscript denotes the CSP and the 

second subscript the time period, here the notation has changed. Specifically, ikF denotes the 

partial derivative of the first period best response function of CSP ‘i’  iF with respect to the first 

period price of CSP ‘k’  1 :kP 1.i k i kF F P    

 If follows that the second-order conditions for a Nash equilibrium require 

11 220, 0.F F   

Moreover, given upward-sloping best reply functions, the equilibrium is stable – in the Nash/best 

reply sense – if the slope of CSP 1’s best reply function exceeds that of 2’s best reply function: 

11 12 22 21
11 22 12 21

21 11 21 11

0.
dP F F dP

F F F F
dP F F dP

         

  Finally, strategic complements implies 

 
1

11 12
12

21 11

0 0.
F

dP F
F

dP F


      Similarly, 

 
2

11 21

21 22

0
F

dP F

dP F


   21 0.F    
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Figure 1: Nash and Stackelberg Equilibria 
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Figure 2: (Anti-) Lock-In Effects 
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