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Abstract—It has been established that quantum algorithms
can solve several key cryptographic problems more efficiently
than classical computers. As progress continues in the field of
quantum computing it is important to understand the risks
they pose to deployed cryptographic systems. Here we focus
on one of these risks - quantum key-recovery attacks against
ideal ciphers. Specifically, we seek to model the risk posed by
an economically motivated quantum attacker who will choose
to run a quantum key-recovery attack against an ideal cipher
if the cost to recover the secret key is less than the value of
the information at the time when the key-recovery attack is
complete. In our analysis we introduce the concept of a quantum
cipher circuit year to measure the cost of a quantum attack.
This concept can be used to model the inherent tradeoff between
the total time to run a quantum key recovery attack and the
total work required to run said attack. Our model incorporates
the time value of the encrypted information to predict whether
any time/work tradeoff results in a key-recovery attack with
positive utility for the attacker. We make these predictions under
various projections of advances in quantum computing. We use
these predictions to make recommendations for the future use
and deployment of symmetric key ciphers to secure information
against these quantum key-recovery attacks. We argue that, even
with optimistic predictions for advances in quantum computing,
128 bit keys (as used in common cipher implementations like
AES-128) provide adequate security against quantum attacks in
almost all use cases.

I. INTRODUCTION

As the field of quantum computing progresses it is crucial
for security practitioners to understand the potential risks
posed to deployed cryptosystems. In this work, we focus
on quantum key-recovery attacks for symmetric key ciphers,
e.g., the Advanced Encryption Standard (AES) blockcipher.
Classically a symmetric key-recovery attack requires N ≈ 2n

queries in the ideal cipher model1 where n is the size of the
secret key (bits). By contrast, Grover’s algorithm only requires
≈ 2n/2 queries in the (quantum) ideal cipher model. While
Grover’s attack requires exponential work2, it constitutes a
dramatic reduction compared to classical attacks. For example,

1In the ideal cipher model the attacker is only allowed to interact with the
cipher as a blackbox oracle.

2By contrast, Shor’s algorithm can be used to break any public key
encryption scheme whose security relies on the hardness of the integer
factorization or discrete logarithm problem in polynomial time. This includes
most widely deployed public key encryption/signature schemes including
RSA, EC-DSA, Schnorr Signatures, ECDH etc. Thus, there is a need to
migrate towards “Post-Quantum” schemes that resist known quantum attacks
like Shor’s algorithm [15], [16].

it would be infeasible for a powerful nation state attacker to
evaluate AES 2128 times, but 264 evaluations might be feasible
even for much less sophisticated attackers!

Traditional wisdom says that one can ensure n bits of
security for an ideal cipher by simply selecting 2n bit keys
instead of n. However, this conservative advice might dramat-
ically overestimate the capability of the attacker. In particular,
Grover’s search requires 2n/2 sequential queries meaning that
attack might not finish in our lifetime. We remark that, in the
ideal cipher model, any quantum key-recovery attack making
at most O

(
2n/2/

√
k
)

sequential queries requires at least

Ω
(

2n/2
√
k
)

total queries, where k represents the number of
parallel quantum circuits being used. Thus, one can parallelize
Grover’s search to reduce the running time by a factor of

√
k,

but this approach necessarily increases the total amount of
work by a factor of

√
k.

In this paper we advocate for an economic approach to
evaluate the security of symmetric key primitives (e.g., AES-
128) in a post-quantum world instead of focusing only on
the running time of the fastest attack. Wiener argued that the
“full cost” of a cryptanalytic attack [38] should account for all
of the required resources e.g., the cost of the circuit running
the attack amortized over the number of instances that can be
solved over the lifetime of the circuit. This view has guided
the design and analysis of secure memory hard functions for
protecting low entropy secrets like passwords against brute-
force attacks [2], [3], [8], [10], [32]. Taking this view we aim
to model (and lower bound) the cost of running a quantum
key-recover attack. We take the view that an attacker will only
run a brute-force attack if the “full cost” of the attack is less
than the value of the information that can be decrypted at
the time when the quantum brute-force attack completes i.e.,
information decrypted 10 years in the future may be worth
less than if the documents had been decrypted today.

II. CONTRIBUTIONS

We introduce an economic model to analyze the vul-
nerability of ideal symmetric key ciphers to quantum key-
recovery attacks such as Grover’s algorithm. In our model
a rational attacker will run a quantum key-recovery attack
only if the cost of running the attack exceeds the value of the
information at the time the decryption key is recovered. One
of the challenges an attacker faces is that Grover’s algorithm



is inherently sequential i.e., the algorithm runs in Ω(2n/2)
sequential steps. Thus, the value of the encrypted information
may be significantly reduced by the time the symmetric key
is recovered e.g., after 10 to 100 years. Our economic model
incorporates several different models of the time-value of
information, as well as the full space of time/cost trade-offs
available to a quantum attacker. For example, the attacker
can reduce the running time by a factor of

√
k by running

k independent searches in parallel, but this increases the full
cost of Grover’s attack by a factor of

√
k. It has been shown

that (parallel) Grover search is asymptotically optimal meaning
that any quantum key-recovery attack will run up against the
same fundamental trade-offs [39].

Given a concrete implementation of the cipher as a quantum
circuit (depth/width), predictions about the speed and cost of
future quantum computers and a model describing the time-
value of the encrypted information our economic model allows
us to quickly decide whether or not it is profitable for an
attacker to run a key-recovery attack. Similarly, we can use
our model to predict how fast/cheap a quantum computer
would need to be to make a key-recovery attack profitable.
It is impossible to predict how quickly quantum technology
will advance. Instead we consider a wide range of predictions
about the speed, size and cost of quantum computers in the
next few decades and analyze costs in each scenario. We use
quantum mania to refer to the world in which all of our most
optimistic predictions about advances in quantum computing
are realized3. In each world we can use an implementation of
a quantum cipher circuit to calculate an estimated monetary
value for a Cipher Circuit Year (CCY) which intuitively
represents the amortized annual cost of using a quantum circuit
(e.g., for the AES cipher).

As a case study we consider an organization that is
considering deploying AES-GCM with n bits of security
in an embedded device with different security parameters
n ∈ {128, 196, 256}. On the one hand it would be possible to
decrease energy consumption (and/or increase throughput) by
using n = 128 bit keys [14]. On the other hand the lifetime
of an embedded device can be several decades meaning that
the organization will want to ensure that the cryptosystem
is sufficiently resilient against quantum computers several
decades in the future. It would be wise for the organization
to make a conservative decision to ensure that the cost a
future quantum key-recovery attack is prohibitive even under
optimistic predictions about the advancement of quantum com-
puting. We argue that a conservative organization can safely
use AES-128. In particular, even under the most optimistic
predictions about the speed/cost of future quantum computers
(quantum mania) the cost of cracking a 128-bit key within
100 years would be at least $9.8 × 1010 (100 Billion USD)
or at least $9.8× 1011 (1 Trillion) to crack the key within 10
years. We conclude that AES-128 should provide sufficient
protection against a rational attacker in almost all application

3The name quantum mania is intentionally meant to be reminiscent of
crypto mania [26] in Impagliazzo’s “five worlds.”

scenarios.

III. BACKGROUND

While a deep understanding of quantum computing is not re-
quired to understand the results in this paper we include some
basics in Appendix A. This background includes standard
models/notations for quantum computing and a description of
how Grover’s algorithm works.

A. Grover’s algorithm

Grover’s algorithm [24] is (in Grover’s words) “A fast
quantum mechanical algorithm for database search”. Given
black box access to some function f : X → Y and some
value y ∈ Y we wish to find a value for x∗ ∈ X such
that f(x∗) = y. Using a classical computer requires O(N)
time, where N = |X|. However, if we exploit Grover’s
algorithm this can be improved from O(N) to O

(√
N
)

.
Given a known plaintext/ciphertext pair (m, c = EncK(m))
we can define a function fc,m(K ′) which outputs 1 if and
only if DecK′(c) = m i.e., if a candidate encryption key
K ′ converts the known plaintext into the known ciphertext.
Thus, if K ∈ {0, 1}n we can recover the decryption key K
in time O

(√
2n
)

by running Grover’s search on inputs y = 1
with the function fc,m. From an asymptotic standpoint this
significantly decreases the amount of time it would take to
brute force a key e.g. it would only take ≈ 2128 steps to find
a key for AES with a 256 bit key. This is especially significant
for AES when using shorter key lengths (e.g. 128 bits) where
the number of steps required to find a key becomes more and
more feasible. Further details on Grover’s algorithm can be
found in Appendix A.

Grover’s algorithm can be slightly modified to run with k
“buckets” in parallel. The basic idea is to partition the search
space X into k buckets X1, . . . , Xk of size N/k and run
Grover’s search on each bucket in parallel. Each bucket Xi has
size N

k so we make
√
N/k queries in each bucket Xi a total of√

Nk queries over all k buckets. Thus, we obtain a speedup
of
√
k but our total costs also increase by

√
k. Zalka [39]

proved that this is optimal. In particular, any quantum search
algorithm running in sequential time

√
N/k must make at

least Ω(
√
Nk) queries to our function f . Thus, in the ideal

cipher model Grover’s search (and its parallel counterparts)
are optimal [39]. We observe that if running time is not an
issue then it is always more cost effective to set k = 1.

B. Current and Future Quantum Computers

While quantum algorithms like Shor’s and Grover’s have
been known for some time as of this writing there are not
yet quantum computers capable of running them in a practical
attack. In fact, there is a very significant gap between the
number of qubits in current quantum computers and the
number of qubits that would be required to run an effective
attack. For much of the past decade systems were limited to
only a handful of qubits (e.g. 2-10) [4], [17] though in the
past few years the number of qubits has jumped to the order
of tens of qubits per quantum computer [25], [28]. While



the Bristlecone project was recently able to achieve “quantum
supremacy” in the sense that they performed a computation
faster than any classical computer could [28]. However, we
are still quite far away from having a quantum computer
capable of running an attack like Grover’s algorithm or Shor’s
algorithm. We note that while companies like D-Wave claim to
have much larger quantum computers these are not universal
quantum computers capable of running attacks like Shor or
Grover [36].

Estimating what future quantum computers will look like in
the near and distant future is a difficult task made harder by
the low number of existing data points. We take an approach
similar to Impagliazzo and examine multiple possible “worlds”
with different levels of future advancement [26]. These worlds
range from fairly steady improvements to incredible advances
in the field. There are significant technical barriers to building
full scale quantum computers e.g., decoherence [29], tem-
perature maintenance [35] and high costs. Current quantum
systems require temperatures very close to absolute zero
and are only stable for tens of microseconds. In our most
optimistic world (quantum mania) we assume that all of these
challenges are convincingly addressed making it feasible to
build cheap/fast quantum computers which are stable for years.

IV. RELATED WORK

A. Analysis of Grover’s algorithm

From its introduction in 1996 [24] Grover’s was recognized
as a clear and practical example of a quantum algorithm that
can outperform classical algorithms. Bennett et. al. showed
that Grover’s search was asymptotically optimal and that NP
cannot be solved by a quantum Turning machine (QTM)
relative to a uniformly random oracle [6]. In 1999 Zalka
conducted a more fine grained analysis showing that for any
number of oracle lookups up to π

4

√
N Grover’s algorithm is

optimal [39]. Zalka also showed that the parallel version of
Grover’s algorithm is optimal.

Grassl et al [23] looked into the problem of constructing
a concrete quantum AES circuit motivated by quantum key-
recovery attacks. In their analysis they provide concrete num-
bers (width/depth) for various AES implementations. Scott
Fluhrer considered the problem of running a key-recovery
attack for AES with a fixed computation budget (# AES
queries) or with a fixed time bound. For example, he estimated
that because Grover’s algorithm is inherently sequential it
would take at least 2125 entangled queries to our AES-192 to
recover the 192-bit key within 200 years. By contrast, we focus
on developing an economic model to analyze the cost/benefit
of a rational attacker and demonstrate that AES-128 should be
safe against rational attackers.

B. Post-quantum cryptography

Shor’s algorithm can be used to break any public key
encryption scheme whose security relies on the hardness of the
integer factorization or discrete logarithm problem in polyno-
mial time. This includes most widely deployed public key en-
cryption/signature schemes including RSA, EC-DSA, Schnorr

Signatures, ECDH etc. Thus, there is a need to migrate towards
“Post-Quantum” schemes that resist known quantum attacks
like Shor’s algorithm [15], [16]. The U.S. National Institute
of Standards and Technology (NIST) has been working on
developing a set of standards for post-quantum cryptography.
NIST first published a report on quantum cryptography in
2016 [15] which outlined their understanding and future plans,
and released a call for proposals in 2017 [16]. In this document
NIST proposes that an attacker running an attack over one
or ten years be limited to a quantum circuit of 240 or 264

layers, respectively. This allows us to implicitly derive speeds
for quantum computers running these attacks.

C. Modeling Economic Attackers and their Costs

Multiple authors have argued that space-time (or area-
time) product is a more appropriate measure of costs than
time alone, including Wiener’s notion of “full cost” [38],
Alwen and Serbinenko’s amortized area-time cost [3]. In
the password hashing competition [20] all but one finalist
claimed some form of memory hardness i.e., high area-time
cost. Our economic model is inspired by a model Blocki et
al. [9], [10] developed to analyze the behavior of a (profit
motivated) password cracking attacker. Space-time costs have
been applied in quantum computing to show that quantum
hash collision methods are not as cost effective as classical
circuits [7], analyze the cost of RSA factorization [22], AES
implementations [23], and elliptic curve cryptography [34].
Especially relevant to this work are estimates for the width
and depth of AES ( [1], [23], [30]).

V. AN ECONOMIC MODEL FOR QUANTUM KEY-RECOVER
ATTACKS

We now introduce an economic model that estimates the
gain (or loss) of a quantum key-recovery attack. Our model
includes the following components: (1) The initial value v0

of the encrypted information and a function R(T, v0) which
describes how this value decays over time T . (2) A time limit
Ty (years) for the attack e.g., 1–100 years. (3) The width and
depth of a quantum circuit implementing the cipher we are
analyzing e.g., see [23], [31] for estimates of AES. (4) The
(predicted) speed of a universal quantum computer (gates/sec),
(5) The (predicted) cost of renting a single quantum circuit
capable of evaluating this cipher (dollars/year). Given these
parameters our model allows us to determine whether or not a
profitable attack exists. Fixing all of the parameters except for
the initial value of the encrypted information we can determine
how valuable the information would need to be for a quantum
key-recovery attack to be profitable. Alternatively, fixing the
initial value of the information (and a decay function) we can
ask how fast/cheap a quantum computer must be to make a
quantum key-recovery attack profitable.

We remark that components three and four of our model
(speed/cost of future quantum computers) are arguably the
most difficult to predict. We advocate for a conservative
approach where we attempt to upper bound (resp. lower
bound) the speed (resp. cost) of a future quantum computer.



We remark that NIST considers 264 to be a safe upper bound
on the depth of any quantum circuit which can be evaluated in
10 years which would correspond to a speed of 5.8×1010 gates
per second. Thus, we might take 60 GHz as our conservative
upper bound on the speed of a quantum computer.

The attacker will select a desired time T (years) for the
key-recovery attack to complete. We can infer the level of
parallelism necessary to complete the attack in time T given
additional information about the depth of our quantum circuit
implementing our cipher (e.g., AES) as well as the gate
propagation speed of our quantum computer. We use C(T ) to
denote the minimum possible cost of a quantum key-recovery
attack with a time bound T . Intuitively, as T decreases the
level of parallelism increases as well as the cost C(T ). We
use the reward function R(T, v0) to describe the attacker’s
benefit when the encrypted information is recovered at time T .
Here, v0 = R(0, v0) denotes the initial value of the encrypted
information which may decrease over time. Thus, the profit of
the attacker is P (T, v0) = R(T, v0) − C(T ) and the attacker
will select the time parameter T ∗ = arg maxT P (T, v0) to
optimize profit. If P (T ∗, v0) < 0 a rational attacker will
choose not to attack. For notational convenience we use
P (0, v0) = 0 to denote the profit of an adversary who does
not run the attack i.e., T = 0.

A. Cipher Circuit Year

To estimate the costs of running an attack we first define
the concept of a Cipher Circuit Year (CCY). Intuitively,
a CCY represents the annual rental cost (which factors in
equipment, labor, electricity, and any other expenses) of a
quantum computer capable of evaluating our cipher (e.g.,
AES)4. We can use CCY as a way to examine the monetary
cost of a key recovery attack. For example, if we are able to
complete a key recovery attack (e.g using Grover’s algorithm)
with no parallelism (i.e. using only one circuit) in 10 years
then this attack would cost 10 CCY. However, if the same
attack was completed in 1 year (which will require the use of
100 circuits running Grover’s algorithm in parallel) we would
have a cost of 100 CCY. Similar notions such as full cost [38]
or aAT complexity [3] have been very fruitfully applied in the
area of password hashing as a method of estimating costs of
computation. Throughout this work we are considering attacks
in the (quantum) ideal cipher model i.e. we do not concern
ourselves with (quantum) structural attacks against a cipher
like AES e.g. [11].

B. Required Level of Parallelism and Attack Costs

Suppose that we have a time bound Ty (unit: years) for
our key-recovery attack. Given the gate propagation speed s
(Hz) of a quantum circuit we can use Ty to upper bound the
total depth t = Ty × s of our computation (quantum gates)

4Alternatively, we could think of CCY as representing the opportunity
cost when this quantum computer used to running our key-recovery attack
instead of performing other computation. Finally, we could think of CCY
as representing this cost of building the quantum computer divided by the
(expected) number of years before the quantum computer breaks.

e.g., if s = 1GHz and Ty = 1 year then t = 3.15 × 1016

seconds. Supposing that our cipher can be implemented as
a depth d circuit our key-recovery attack can make at most
t/d sequential oracle queries to the cipher. If we partition
our search space {0, 1}n into k buckets of size N/k and run
Grover’s attack on each bucket in parallel then we require at
least π

4

√
N
k sequential oracle calls in each bucket (π4

√
Nk

total oracle calls). Thus, t/d ≥ π
4

√
N
k which means that

we require parallelism k ≥ π2N

16( t
d )

2 . The total cost will

be minimized when equality holds. The total cost will be
C(Ty) = Ty × k × CCCY , where CCCY is the cost of a
CCY e.g., in USD. We remark that the value of k will depend
on the time bound Ty , the depth d of our cipher and the speed
s (Hz) of our quantum computer. Substituting into the above
formula we get

C(Ty) =
CCCY π

2Nd2

16Tys2

Intuitively, the cost decreases as we relax the time bound
Ty . If Ty ≥ π

4

√
N ∗ ds is sufficiently large to set k = 1 we

have C(Ty) = C
(
π
4

√
N ∗ ds

)
.

We note that attack costs are directly linked to an attacker’s
strategy. If an attacker considers the value of information
to be less than the cost to run the attack we say that a
rational attacker will choose to not run the attack, leaving the
information secure.

C. Time-Value of Information and Reward Functions

We first discuss several different instantiations of the reward
function R(T, v0) which defines the time-value of the en-
crypted information. We will always assume that the function
is monotonic i.e., R(T, v0) ≤ R(T − ε, v0). Intuitively,
obtaining the secret information earlier (e.g., at time T − ε)
is preferable to obtaining the secret information later5. In
our analysis we consider three types of reward functions:
(1) Constant functions R(T, v0) = v0 i.e., the time-value of
the information does not diminish over time. (2) Threshold
Functions where the information has value v0 before time T ′

and value 0 afterwards i.e., RT ′(T, v0) = v0 whenever T < T ′

and RT ′(T, v0) = 0 for T > T ′. (3) Delta Discounting where
the time-value of the information smoothly decays with some
fixed rate 0 < δ < 1 i.e., Rδ,T ′(T, v0) = v0δ

T . While this
is not an exhaustive list of all possible reward functions we
believe our list constitutes a reasonable range of behaviors.

We remark that a threshold function is appropriate in
settings where the encrypted information will become public
at some time t′ in the future e.g., scripts for a soon to be
released blockbuster movies or plans for an upcoming military
campaign. The constant reward function can be seen as a
special case of delta-discounting with δ = 1 and threshold
T ′ = ∞. Below we analyze the attacker’s optimal strategies
with respect to each reward function.

5If the attacker prefers to wait to time t to recover the secret information
he could always run the attack and then wait ε seconds to measure the quibits



D. Rational Attacker Strategies

A symmetric key-recovery attacker can pick a desired
parallelism parameter k. Larger values of k reduce the
running time T . Thus, by picking large k we can potentially
earn a larger reward R(T, v0), but at the expense of
total cost C(T ). However, as long as the total profit
P (T, v0) = R(T, v0)−C(T ) increases it is in the adversaries
best interest to pick a larger value of k.

Constant valuation: For constant reward functions profit is
maximized whenever C(T, k) is minimized. As our total time
and work only increase with the addition of more oracles, C
is minimized by setting k = 1 i.e. running a sequential attack.
We argue that constant valuation is rarely an appropriate
model e.g., we expect that the value of information will not
be useful after 100 years since most people who are currently
alive won’t be around to benefit.

Threshold function: We next consider the threshold reward
functions where information has value v0 before time T ′ and
value 0 afterwards e.g., plot points for an upcoming movie.

RT ′(T, v0) =

{
v0 T ≤ T ′

0 T > T ′

, where v0 is the value of the information if it is recovered
in time. In such a case there is no need to decrypt the
information after time T ′ so the attacker effectively faces a
time limit of T ′. Since the reward is constant before time T ′

the attacker will maximize profit by selecting the minimum
possible level of parallelism necessary to finish in time
exactly T ′ i.e., k = π2N

16 t
d
2 where t = T ′ · s.

Delta discounting with Threshold We now analyze the be-
havior of the attacker with smooth δ-discounting reward func-
tions i.e., Rδ,T ′(T, v0) = v0δ

T for T ≤ T ′ and Rδ,T ′(T, v0) =
0 if T ≥ T ′. Here, 0 < δ ≤ 1 is our decay parameter
and T ′ is our threshold. The attacker wants to pick a time
T which maximizes profit P (T, v0) = Rδ,T ′(T, v0) − C(T ).
We show that there are three possible ways to maximize
the profit function P (T, v0). (1) If the attacker does not run
the attack T = 0 then P (0, v0) = 0. (2) The attacker sets
T = min{Tseq, T ′} where Tseq = πd

4s

√
N is the time to run

the sequential version of Grover’s algorithm (k = 1) when the
speed is s and the depth of the underlying cipher circuit is d.
(3) The attacker sets T = T ∗ for a special value

T ∗ =
2W

(
1
2

√
c log δ

)
log δ

.

Here we let c = Λ
v ln δ−1 and W (·) denotes the analytic contin-

uation of the product log function i.e., the Lambert W function.
We note that this function can be efficiently evaluated. The
value T ∗ is derived by analyzing the derivative of P (·, v0).
The full details of this derivation are in Appendix A.

E. On the Future Cost and Speed of Quantum Computers
Our economic model utilizes predictions of the future

speed/cost of quantum computers. However, it is difficult (or
impossible) to predict what these values may be. Instead we
consider a range of possible future worlds: quantum mania,
optimistic improvements and steady improvements. Arguably,
all of these worlds represent optimistic predictions of the
future power of quantum computers. We could add a fourth
pessimistic world where the field of quantum computing is
stuck for decades due to insurmountable technical barriers
e.g., decoherence, temperature maintenance. However, in such
a world it would not be interesting to analyze quantum attacks.
We advocate for a conservative approach where we attempt
to upper bound (resp. lower bound) the speed (resp. cost) of
a future quantum computer. In particular, if an attack is not
profitable in our quantum mania scenario then it is reasonable
to assume that no attack will be profitable.
• Quantum Mania: Here we assume that quantum com-

puters have enjoyed incredible advances, both in gate
speed, number of qubits, and cost. In particular, we
assume that quantum circuits can be evaluated at a
gate propagation speed of 60GHz which we derive from
NIST’s proposed upper bound on the maximum depth
(264) of a quantum circuit which could be evaluated in
10 years [16] i.e., 60GHz ≈ 264/(10 × Ysec) where
Ysec = 3.154× 107 is the number of seconds a year. We
also assume that dramatic advancements in QC technol-
ogy e.g. temperature maintenance and construction costs
making it possible to rent a quantum AES circuit for $50
per year i.e., CCCY = $50.

• Optimistic improvements: We assume a slightly slower
gate propagation speed of 1GHz for quantum computers
comparable to the clock speed of current desktop com-
puters. We also assume that CCCY = 500USD. This
price is meant to be in line with a budget desktop one
can currently purchase.

• Steady improvements: We assume that future quantum
circuits can be evaluated at a gate propagation speed
of 100MHz. We set CCCY = 50000USD here. In this
scenario the future speed/cost of quantum computers is
not comparable to current classical machines. However,
this future world would still constitute a dramatic increase
in QC technology.

VI. CASE STUDY: AES128
In this section we use our economic model to analyze the

cost of breaking a 128 bit AES key. To apply our model
we first require a concrete implementation of AES-128
as a quantum circuit. Multiple groups have consider the
problem of implementing AES-128 as a quantum circuit
resulting in a series of increasingly efficient constructions [1],
[23], [30]. Specifically, Langenberg et al. [30] provide the
implementation with the smallest depth d ≈ 5.8 × 104. This
corresponds to 3.27 × 1013 sequential AES oracle calls per
year in our quantum mania scenario.



In our analysis we consider an attacker with a threshold
reward function RT ′(T, v0) for thresholds T ′ ∈ {1, 10, 100}
years. Here we aim to determine how valuable the encrypted
information v0 must be for a profitable attack to exist. We re-
peat this analysis for each of our quantum scenarios: quantum
mania, optimistic improvements and steady improvements.
Similarly, we can analyze the behavior of a profit motivated
attacker when faced with δ-discounting rewards RT ′,δ(T, v0)
for thresholds T ′ ∈ {1, 10, 100} years. Here, we plot the
minimum reward v0 for a profitable attack vs. δ. Intuitively, as
δ increases (slower diminishing rewards) the minimum value
v0 will increase. Finally, if we fix v0 we can ask how fast/cheap
would a quantum computer need to be for a profitable attack
to exist.

A. Threshold Functions

We first begin by examining what the costs would look like
if the value follows a threshold function. When considering
our 100, 10, and 1-year attacks we first convert this to some
value d, which in this case is representing the number of
circuit layers we have available given the quantum power
estimates and the time available. For example, in the incredible
improvements scenario, we have t = 1.892 × 1020, which is
derived from the 60GHz figure combined with the 100-year
time span. This t, combined with the AES-128 circuit depths
from [23], allows us to derive the number of oracle calls that
can be made in the set time. With a number of oracle calls
possible in the time we derive k such that the attack would
finish in the allotted time. k times the attack length in years
gives us our CCY cost. A final substitution for the cost ratios
described earlier puts a cost in USD to run each attack. These
threshold results are described in Tables I, II, and III.
• 100-year attack: A 100-year attack represents the most

persistent of adversaries. This is an attack that spans
generations and would represent an enormous effort to
recover some piece of information. In many ways, this is
an impractical attack, as there are not many cases where
it is worth protecting information for 100 years. Still, we
include this type of attack to make a point about the costs
of a quantum key-recovery attack. The estimated costs for
this attack with a threshold function are in Table I, II, and
III.

TABLE I
100 YEAR ATTACK, THRESHOLD VALUE FUNCTION

Advancement t k
Mania 1.892× 1020 1.962× 107

Optimistic 3.154× 1018 7.064× 1010

Steady 3.154× 1017 7.064× 1012

Cost(CCY) Cost(USD)
Mania 1.962× 109 9.810× 1010

Optimistic 7.064× 1012 3.532× 1015

Steady 7.064× 1014 3.532× 1019

TABLE II
10 YEAR ATTACK, THRESHOLD VALUE FUNCTION

Advancement t k
Mania 1.89× 1019 1.962× 109

Optimistic 3.154× 1017 7.064× 1012

Steady 3.154× 1016 7.064× 1014

Cost(CCY) Cost(USD)
Mania 1.962× 1010 9.810× 1011

Optimistic 7.064× 1013 3.532× 1016

Steady 7.064× 1015 3.532× 1020

TABLE III
1 YEAR ATTACK, THRESHOLD VALUE FUNCTION

Advancement t k
Mania 1.89× 1018 1.962× 1011

Optimistic 3.154× 1016 7.064× 1014

Steady 3.154× 1015 7.064× 1016

Cost(CCY) Cost(USD)
Mania 1.962× 1011 9.810× 1012

Optimistic 7.064× 1014 3.532× 1017

Steady 7.064× 1016 3.532× 1021

• Ten-year attack: A ten-year attack still represents
a fairly long-term attack. Essentially, this is an attack
against information that is not time-sensitive, which
might include something like bank account access cre-
dentials. The estimated cost with a threshold function can
be found in Table II.

• One year attack Here we consider attacks that may be
of interest to an adversary wanting information that is
valuable in the near future. This might include things
like business strategies, financial plans, etc. The estimated
cost with a threshold function can be found in Table III.

B. δ discounting method

For the δ discounting method we present the information
in a slightly different way. We look for the minimum value
such that an attack would be profitable to run. As we have
P (TY , v0) = RT ′,δ(Ty, v0)− C(Ty) = vδTy − cCCY π2NTy

16(t/d)2 ,

where t = Ty · s. We have a viable attack if v ≥ π2Nd2

16Tys2δ
Ty

.
Here we can set Ty appropriately, as we did in the threshold
experiments. When this is set we have the option to let δ range
from 0 to 1, or equivalently to allow δTy to range from 0 to 1.
For the sake of demonstration we will be examining this kind
of attack in the “incredible improvements” scenario. To find
this point v we first require the conversion factor between Ty
and t. We have d = 57894 as our circuit depth for AES [30]
(taking their round-depth estimates for a full Grover’s attack).
Supposing that s = 6×1010Hz (quantum mania) we are able
to evaluate a circuit of depth t = Ty × 6 × 1010Hz where
Ty is given in years e.g., 1 year, 10 year, or 100 years (here
we take 100). Substitution gives t

d =
Ty×Ysec×6×1010Hz

57894 =
Ty × 3.271× 1013. We know that an attack is profitable only
if

v ≥ CCCY π
2N

16(3.271× 1013)2TyδTy
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Fixing Ty ∈ {1, 10, 100} and letting β = CCCY π
2N

16(3.271×1013)2Ty

we have v ≥ β
δt

. We plot the minimum value required for this
to be true for the given Ty , and the results for the quantum
mania world are shown in Figure 1. We note that the case
δt = 1 is identical to the case where δ = 1, and that these
values will match those from the threshold function. For other
values in this chart, δTy can be understood as the remaining
value at the end of the attack e.g. δTy of 0.2 in the 100 year
case means that 20% of the value remains after 100 years,
while in the 1 year case δTy of 0.2 means only 20% of the
value remains after a single year. In the case δTy = 0.2 the
specific value of δ = (0.2)

1
Ty . Thus, our model predicts that

AES128 provides sufficient protection provided that the initial
value of the information is under ≈ 1011.5 USD.

C. Improvements in circuit width and depth

We now consider the following question. What happens if
we are able to develop smaller quantum circuits to compute
a cipher (e.g. the quantum AES circuit)? Improvements might
be made either by reducing the width or the depth of the
circuit e.g., by exploiting feasible time-space tradeoffs for the
function. We first note that if the width is reduced by some
factor c then the cost of running the attack also drops by the
same factor c. More interesting is the case where we are able
to reduce the depth of our cipher circuit. As we reduce depth
d of the quantum circuit (holding width constant) an attacker
running at the same gate speed is able to make more cipher
queries in the same amount of time. Thus the attacker saves
cost on multiple fronts — the circuit itself is smaller by some
factor c and the attacker is able to reduce parallelism because
s/he can make more sequential queries in the same amount
of time. In fact, improvements in circuit depth offer quadratic
improvements in attack cost, meaning that it is worth reducing
the depth of a quantum circuit even if it comes at the cost of
increasing the width by a sub-quadratic amount. Specifically,
if we reduce d by some factor 0 < β < 1 we now have a
more relaxed requirement for our time t. Previously for some
set real time limit Ty we had time to make xt oracle calls. We
now have time for 1t

dβ >
t
d calls. Thus our previous k = π2N

16 t
d
2

becomes k′ = π2N
16( t

d/β)2
= β2k. Thus a reduction by β offers

quadratic returns. Note that increases in QC speed identically
affect how many calls per year we can make and offers the
same tradeoff.

Suppose that we reduce depth by a factor of 20 while
increasing width by a factor of 2. This allows for a 400 fold
reduction in the level of parallelism, and a 200 fold reduction
in costs. In our 100 year quantum mania example from Table I
this could lower attack cost to ≈ 4.9× 108 USD. Far smaller
than the previous estimates, but still infeasible in practice for
most applications. In recent (concurrent) work [27] shows
improvements similar to this example, which would allow
attacks with this cost to be run in the 100 year quantum mania
scenario.

D. Computers capable of running profitable attacks

Under the assumptions from our three worlds of quantum
development we found that any quantum key recovery attack
for a 128-bit key is not economically feasible. Here we seek to
answer a related question: If we want an economically feasible
attack, what kind of quantum computer would be required?
We follow a similar strategy of proposing three attacks, but
note that this analysis works for any relevant parameters.
We begin here not by assuming any level of advancement
in quantum computing but by assuming an attacked values
some piece of information at a particular level. Here we select
some USD amount e.g. 100,000, 1,000,000, or 10,000,000
as the value of information. We also allow the attacker to
select 1, 10, and 100 year attacks in the same manner as in
Section V. When we set the cost and time limit for these
attacks we arrive not at a single quantum computer that would
suffice to run the attack but a family of quantum computers
with varying speeds and costs. This fact arises from the
theoretical ability to bring cost per cubit down if we allow
for a computer to have a higher clock speed. So, when we
set the total budget and time limit for an attack we arrive at
some family of computers described in terms of the cost/speed
tradeoffs. These tradeoffs are subject to the quadratic increase
in cost seen when increasing the level of parallelism. We
denote a family of quantum computers Qb,Ty,n based on a
budget b, time limit in years Ty , and key length n. This
describes the set of quantum computers capable of running a
quantum key-recovery attack with the relevant restrictions. The
family contains all quantum computers satisfying the property:

Qb,Ty,n =

{
q : CCCY ≤

16b( s
d )

2

π22nTy

}
where d is the depth of

the oracle circuit and s is the number of circuit layers that
can be processed in the given time limit. We can now begin
to look at some families of quantum computers based on
some reasonable attack budgets. Consider an attack that is of
vital importance - where an attacker is willing to spend USD
100 million on an attack on AES-128, and needs it within
100 years. A quantum computer capable of doing so is in
Q1.0×108,100,128, which contains all quantum computers such

that CCCY ≤
1.6×109( s

57854 )
2

π22128100 = 1.423× 10−42s2. Consider a
case where we would like CCCY ≤ USD1000. This would
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Fig. 2. Possible values of CCCY based on estimated QC speed (b = 1.0×
108, Ty = 100, n = 128

require the computer to run at a speed of s = 2.65 × 1022

in 100 years, corresponding to a gate propagation speed of
8.403 × 1012Hz, well beyond NIST’s estimates of around
60GHz [16]. Any required parameters might be inserted here
to see what would be required to make the existing parameters
work - a plot of the family that can solve this problem is
shown in Fig 2. We note that no matter which parameters you
pick for this attack you end up with a computer that is either
impossibly fast or impossibly cheap, meaning that no quantum
computer that can run an attack with this requested budget and
time limit is feasible.

VII. M TO 1 KEY RECOVERY ATTACKS

With a chosen plaintext attack where multiple keys have
been used and a single chosen plaintext can be used with
multiple keys it is possible to “batch” key-recovery attacks
for a more effective attack. This might be considered where
any one of m keys would be sufficient for an adversary to
accomplish their goals e.g. to access some specific set of
data that had been sent to multiple people using multiple
different keys with the same nonce. We consider a chosen-
plaintext attack where an attacker has manged to obtain M
ciphertexts c1, . . . cM all encrypting the same known plaintext
m i.e., ci = Encki(m; r) where m = m1||m2 consists of
two blocks and the randomness r (i.e., nonce) is the same.
Such a scenario might arise if we have multiple embedded
devices using a stateful mode of operation like AES-CTR with
a fixed initialization vector. Modes like AES-GCM would not
be susceptible to this attack as long as the nonces are selected
appropriately i.e., with strong PRGs.

Our attacker will be content to crack any of the keys
k1, . . . , km. To run Grover’s algorithm the attacker would need

to implement the function

fk1,...,kM (x) =

{
1 x ∈ {k1, . . . , kM}
0 otherwise

.

This function could be implemented as follows

Fc1,...,cM (x) =

{
1 Encx(m) ∈ {c1, . . . , cM}
0 otherwise

.

We first note that (except with negligible probability) we
will have Fc1,...,cM (x) = fk1,...,kM (x) for all inputs x i.e.,
because m is two blocks long we expect that for each ci
there is only one key k (namely k = ki) s.t. Enck(m) = ci.
Note that each call to Fc1,...,cM generates just 2 calls to the
underlying cipher-circuit to obtain c = Encx(m) — both of
these calls can be evaluated in parallel. We then need to check
whether or not c ∈ {c1, . . . , cm}. Since we want to compute
Fc1,...,cM on the same quantum hardware used to evaluate
the cipher we require that the width of our circuit is not
larger that the width of our AES circuit. When we add this
restriction Fc1,...,cM can be evaluated on a Quantum Circuit
of depth O

(
dAES + Mn

wAES

)
where dAES ≈ 1.5 × 104 and

wAES ≈ 103 are the depth and width of the quantum AES
circuit. Since n = 128 in our analysis, whenever M < 105

the depth of the circuit is dominated by the depth of the AES
circuit.

Theorems 1 and 2 below upper and lower bound the total
number of ideal cipher queries necessary to recover one out
of M keys.

Theorem 1. There exists a k-parallel quantum algorithm
AFc1,...,cM

(·) such that Pr
[
AFc1,...,cM

(·)(x)(1n) ∈ S
]
> 1

2

in sequential time O
(√

N
kM

)
and makes O

(√
kN
M

)
oracle

queries, where probability is taken over selection of a random
subset S ⊆ {0, 1}n of size M as well as the randomness of
AfS(·).

Theorem 2. Given any constant c ∈ (0, 1] there is no k-
parallel quantum algorithm AEnc running in sequential time

o
(√

N
Mk

)
and making at most o

(√
Nk
M

)
queries to the

ideal cipher that can find an element x ∈ S with probabil-
ity Pr

[
AfS (1n) ∈ S

]
> c, where probability is taken over

selection of a random subset S ⊆ {0, 1}n of size m as well
as the randomness of AfS(·).

The proofs for these theorems can be found in the Ap-
pendix, and generally follow commonly used methods for
other Grover’s algorithm optimality results. These theorems
show that when considering an M key batch attack running
on multiple quantum computers in parallel Grover’s algorithm
is an asymptotically optimal solution. This also shows that as
you obtain M keys to batch together you can speed up attacks
by a factor of

√
M . This can cause some significant reductions

in attack costs, bringing some attacks closer to economically
feasible ranges. For example, consider a setting where the
attacker has access to M = 106 encryptions of the same



message under different AES keys. In this case the cost of
cracking one of these keys within 100 years would be around
100 million (USD) under our quantum mania assumption. This
is still quite expensive, but significantly cheaper than the 100
billion (USD) it would take to crack each key individually.

VIII. DISCUSSION

We introduced an economic model to analyze the efficacy
of quantum key-recover attacks. Our results (for threshold
scenarios) are summarized in table I, II and III. Within
these tables consider the attacker’s most optimistic scenario.
Suppose that we are in the “quantum mania” world in which
the cost/speed of quantum computers improves at a rapid pace.
Further suppose that the only time restriction that the attacker
faces is that the key-recovery attack must be completed within
100 years. Even in the attacker’s best case scenario the cost
of a key-recovery attack is estimated at 9.81 × 1010 USD,
a very significant amount. While this is certainly less than
the expected classical cost of 9.24 × 1029 USD we still see
a significant financial barrier to these attacks. Under less
optimistic scenarios the attacker’s costs only increase e.g., if
the attacker needs to recover the key in 10 years under our
“optimistic” assumption on advances in quantum computing
the attacker’s costs will be at least 3.352× 1016, well beyond
the capabilities of any adversary. Given that the cost of a
quantum key-recovery attack is so high we argue that for
almost all use cases AES-128 should remain safe in a post-
quantum world. We additionally stress that the values we
provide should be considered lower bounds. We have ignored
many significant issues that arise for quantum computers like
error correction, decoherence, and electricity costs.

We advocate for rethinking the common strategy of defend-
ing against a quantum key-recovery attack by doubling the key
length. In fact, not only do we find that doubling key length
is usually unnecessary, we also find that adding a constant
number of bits to the key is not needed as suggested in [21].
In settings where computational overhead is paramount (e.g.,
embedded devices) and the secret is under our lowest attack
cost estimate (6.63 × 109 USD) it may be better to opt for
smaller key lengths.

a) Economic Analysis of Second-Preimage Attacks: In
this work we focused on quantum key-recovery attacks, such
as those that might be run with Grover’s algorithm against
AES. However there are other similar attacks that are pos-
sible using Grover’s algorithm e.g., a second-preimage attack
against a hash function. In this case we run Grover’s algorithm
with a fixed hash output and query for elements of the domain
that produce the desired output. These attacks would allow
for the forging of digital signatures. We note that our models
may be extended to represent these attacks as well. To run the
attack some number of oracle circuit years would be required,
which is a concept very close to the cipher circuit years we
used here. While [13] shows that Grover’s algorithm can be
used to reduce the cost of b bit hash collisions to O

(
2b/3

)
, [7]

claims that these will remain cost ineffective, and that classical

computers outperform these methods even under optimistic
assumptions for quantum computer speed.

A. Future work

We have introduced a general method of modeling quan-
tum key-recovery attacks, focusing our attention on Grover’s
algorithm being used to attack AES-128. The main reasons
we focused on this specific instance is because we believe
it focuses on a common cipher (AES) and uses the most
well-known key-recovery attack (Grover’s). There are also
published estimates for the circuit width and depth of AES [23]
that allow us to cleanly estimate the circuit width and depth of
this attack. It would be interesting to see how the model would
apply in other situations, but this would require additional
work to be completed in other areas. If, for example, we
wanted to run the same analysis on Triple-DES, which is still
a NIST approved cipher [5], we would require an analysis
similar to the work done by Grassl et. al. Without this the
analysis cannot progress much farther beyond a price in CCY -
as estimates are not available for the conversion between CCY
and actual cost. Additional analysis for ciphers like Triple-
DES may also be of interest. Whereas AES can be modeled
as an ideal cipher with key size k it may not be the case that
a “Triple-AES” would be an ideal cipher with key length 3k.
What would the specifics of a quantum attack against Triple-
DES or Triple-AES look like, and is there a more effective way
to run the attack than a Grover’s attack on a key of length 3k?

Finally, in our analysis we assume that the gate propogation
speed of a quantum circuit is upper bounded by 60GHz [16].
Future work might explore the potential profitability of quan-
tum key recovery attacks under the assumption that quantum
computing speeds advance similar to Moore’s Law and double
every few years. In classical computing Moore’s Law appears
to be reaching its limit [18], [37]. If quantum computing does
not encounter similar barriers, then quantum key recovery
attacks might eventually become profitable as long as the δ-
discounting parameter does not dominate the rate of progress.
For example, we might consider a 100 year attack scenario
with some budget and reward amount and ask at what rate
quantum computer speeds need to double for a viable attack
to exist.
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[17] CÓRCOLES, A. D., GAMBETTA, J. M., CHOW, J. M., SMOLIN, J. A.,
WARE, M., STRAND, J., PLOURDE, B. L., AND STEFFEN, M. Process
verification of two-qubit quantum gates by randomized benchmarking.
Physical Review A 87, 3 (2013), 030301.

[18] COURTLAND, R. Gordon moore: The man whose name means progress,
Mar 2015.

[19] DE WOLF, R. Quantum computing: Lecture notes, Jan 2018.
[20] ET AL., J.-P. A. Password hashing competition, 2015.
[21] FLUHRER, S. R. Reassessing grover’s algorithm. IACR Cryptology

ePrint Archive 2017 (2017), 811.
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APPENDIX

QUANTUM COMPUTING

Quantum computing allows for computation over qubits, a
quantum analog of classical bits. Each qubit has two state
analogous to the classical 0 and 1 states denoted as the
|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
states respectively. Rather than each

qubit remaining in one classical state they are able to exist
as a superposition of states |ψ〉 = α0 |0〉 + α1 |1〉 , αi ∈ C.
Multiple qubits are combined via tensor products and are
denoted in this paper as (e.g.) |01〉 = |0〉 ⊗ |1〉. When
a quantum computer is in a state |ψ〉 it can be advanced
to a new state |ψ′〉 by multiplication with a unitary matrix
U (a matrix whose inverse is its conjugate transpose) i.e.
|ψ′〉 = U |ψ〉. Quantum algorithms are described as sequences
of unitary transformations on these qubits. For a far more
detailed description of the basics of quantum computing we
direct the reader to [19] or another online resource of their
choosing.

The ability to operate while in a superposition gives
quantum computers an advantage over classical computers
- with quantum computers having a significant advantage
when solving certain types of problems. In several cases this
improvement is very significant e.g. the ability to solve the
integer factorization and discrete log problems in polynomial
time - a feat that has not been accomplished with classical
computers. The ability to solve these problems efficiently
has clear implications for security, allowing for quick attacks
on several asymmetric or public key cryptosystems. In other
cases quantum algorithms may provide a significant advantage
over classical attacks, but not so significant as a polynomial
time attack. Grover’s algorithm, which we will examine most
closely, is an example of this type of attack. Here a quantum
computer is capable of providing quadratic speed up which,
while not as strong as a polynomial time attack, is still of
interest.

A. Some relevant quantum definitions

Throughout this paper we will be working with several
specific quantum algorithms to accomplish our goals. These
algorithms will make use of the following quantum gates:



• Hadamard gate: H = 1√
N

[
1 1
1 −1

]
Maps the |0〉

and |1〉 states to 1√
2
|0〉 + 1√

2
|1〉 and 1√

2
|0〉 − 1√

2
|1〉

respectively. Importantly - the Hadamard gate is its own
inverse.

• Phase query: Oi,± : |i〉 → (−1)
f(i) |i〉. Negates the

amplitude if the value of f at i is 1.
• Inversion around mean amplitude Us: The unitary

transform Us = H⊗n (2 |0n〉 〈0n| − In)H⊗n inverts the
superposition |ψ〉 around the mean amplitude i.e. αi+1 =(

2
2n

∑
j

αj

)
− αi

GROVER’S ALGORITHM DEFINITION

1) Begin in the |ψ〉 = |0〉⊗N state

2) Apply H⊗N to get |ψ〉 = 1√
N

N−1∑
i=0

|i〉

3) Repeat O
(√

N
)

times:

a) Apply the phase query |ψ〉 ← O± |ψ〉
b) Apply Us to invert about the mean amplitude

4) Observe the result
Note that because the phase query O± negates the amplitude

of |x∗〉 while the mean amplitude stays positive we will end
up increasing the the amplitude of |x∗〉 while decreasing the
amplitude of all other states. After repeating O(

√
N) times

the amplitude αx∗ will be likely to be observed. Here the
constants are important, as after a time the amplitude αx∗ will
start decreasing if the inner loop is iterated too much. When
N is large (which it will be, for our purposes) the loop should
be run about π

4

√
N times for a high probability

(
≈ 1− 1

N

)
of success [12].

COMPARISON WITH CLASSICAL ATTACKS

While we are primarily concerned with the economics of
quantum attacks it is worth taking a moment to establish a
comparison point with classical attacks. Here we once again
note a few things - first is that classical attacks parallelize
perfectly i.e. there is no penalty to dividing the search space
and running in parallel. Because of this it is much easier to
establish the costs of an attack. We also note that time limits
are less relevant to classical attacks in many situations. So long
as the time limit to run a key-recovery attack is longer than the
expected lifespan of the equipment to run it we can generally
expect the costs of a parallel attack to match the costs of
a sequential attack (within some reasonable constant factors).
For a baseline, we consider an attack using an FPGA setup for
AES128 capable of making guesses at 350 million guesses per
second while using 6.6W [33]. If we take a value of USD 0.08
per kWh for electricity costs we have an expected attack cost
using the brute force algorithm A of E(cost(A)) = 2127 ∗
cost(A). cost(A) = 0.0066∗0.08∗602

3.5∗108 ≈ 5.43 ∗ 10−9. A final
estimated cost would then be 2127∗5.3∗10−9 ≈ 9.24∗1029. We
note that this accounts for the energy costs alone, and neglects
other cost factors such as equipment cost, maintenance, labor,

etc. However, the electricity costs alone are so prohibitively
expensive that it alone is conclusive evidence that a classical
attack on a 128 bit ideal cipher key is not economically
possible.

m TO 1 DETAILED PROOFS

Theorem 3. There exists a k-parallel quantum algorithm
AfS(·) such that Pr

[
AfS(·)(x)(1n) ∈ S

]
> 1

2 in sequential

time O
(√

N
kM

)
and makes O

(√
kN
M

)
oracle queries, where

probability is taken over selection of a random subset S ⊆
{0, 1}n of size M as well as the randomness of AfS(·).

Proof. WLOG we assume that M = 2m is a power of two to
simplify exposition. Let AfS(·)(1n) do the following:

1) Partition the search space into m blocks B0m , . . . , B1m

where we have Bx = {xy : y ∈ {0, 1}n−m} for each
x ∈ {0, 1}m.

2) Select a block uniformly random Bx for x ∈ {0, 1}m.
3) Run a modified k-Parallel Grover’s algorithm on the

block Bx.
Straightforward balls and bins analysis tells us that
Pr [|Bx ∩ S| ≥ 1] ≥ 1− 1

e . Boyer et al [12] adapted Grover’s
algorithm to handle the case where there are an unknown
number of solutions t. Their algorithm runs in sequential time

O

(√
|Bx|
t

)
. Since,

√
|Bx|
t = O

(√
|Bx|

)
and

√
|Bx| =√

N/M the running time would be at most O
(√

N
M

)
. If the

attacker is k-parallel we can use the standard trick of further
dividing Bx into k blocks Bx,1, . . . , Bx,k of equal size and
running an independent search on each of these blocks. Each
of these searches requires sequential time O

(√
|Bx,i|

)
=

O
(√

N
Mk

)
with O

(√
N
Mk

)
queries to fS(·) total number

of oracle queries would be O
(√

N
Mk

)
.

We remark that if |Bx ∩ S| ≥ 1 then the search
will succeed with high probability. Thus, we have
Pr
[
AfS(·)(x)(1n) ∈ S

]
≥ 1

2 as required.

Theorem 4. Given any constant c ∈ (0, 1] there is no
k-parallel quantum algorithm AfS running in sequential

time o
(√

N
Mk

)
and making at most o

(√
Nk
M

)
oracle

queries that can find an element x ∈ S with probability
Pr
[
AfS (1n) ∈ S

]
> c, where probability is taken over se-

lection of a random subset S ⊆ {0, 1}n of size m as well as
the randomness of AfS(·).

Proof. (sketch) We assume that M = 2m is a power of two
to simplify presentation. We first note that the problem of
selecting a susbset S of size M is equivalent to randomly parti-
tioning the search space {0, 1}N into M blocks B0m , . . . , B1m

of size 2n−m = N/M and then constructing S by randomly
selecting one element from each block Bx. If we offer to reveal
the partition B0m , . . . , B1m this can only help the attacker.
Thus, without loss of generality we can assume that S is



constructed by selecting one random element from each of
the sets Bx = {yx : y ∈ {0, 1}n−m} for each x ∈ {0, 1}m.

We will argue by contradiction. In particular, we show that
if such a k-parallel quantum algorithm AfS exists such that
(1) Pr

[
AfS (1n) ∈ S

]
> c, (2) AfS runs in sequential time

o
(√

N
Mk

)
and (3) AfS makes at most o

(√
Nk
M

)
oracle

queries then we can devise a new k-parallel quantum algorithm
A′ to solve the regular quantum search problem over the
search space {0, 1}n−m such that A′ runs in sequential time
o
(√

N ′

k

)
and makes at most o

(√
kN ′

)
queries contradicting

a result of Zalka [39].
Given an indicator function fx : {0, 1}n−m → {0, 1} such

that fx(x) = 1 and fx(y) = 0 for all y 6= x the quantum
search problem is to find the secret value x given oracle access
to fx(·). Our algorithm A′fx will select random values yz ∈
{0, 1}n for each z ∈ {0, 1}m subject to the constraint that for
any z 6= z′ the last m bits of yz and yz′ are distinct. We can
implicitly define the set S = {(xz)⊕yz : z ∈ {0, 1}m}. The
set S cannot be constructed explicitly, but A′ can simulate the
oracle fS(·) using two queries to the oracle fx(·). In particular,
given an input w ∈ {0, 1}n for fS(·) there are at most two
values z ∈ {0, 1}m such that wz = w ⊕ yz = xwz for some
string xw ∈ {0, 1}n−m and then let xz denote the first n−m
bits of wz . We remark that w ∈ S if and only if we can find
z, w such that wz = w ⊕ yz = xwz and fx(xw) = 1. A′

will now simulate AfS to recover w ∈ S with probability at
least c > 0. The sequential running time of A′ will still be
o
(√

N
Mk

)
= o

(√
N ′k

)
and the total number of queries will

be qA′ = 2 ∗ qA = o
(√

N ′k
)

. Given w ∈ S we can find
the unique value z ∈ {0, 1}m such that wz = w ⊕ yz = xwz
for some string xw ∈ {0, 1}n−m and recover x from the first
n−m bits of wz .

DETAILED PROFIT MAXIMIZATION DERIVATION

Here we seek to maximize:

P (T, v0) = Rδ,T (T, v0)− C(T )

= vδT − CCCY π
2Nd2

16Ts2

We compress via Λ = CCCY π
2Nd2

16s2 . Profit can be maximized
as:

P ′(T, v0) =
d

dTy

(
vδT − Λ

Ty

)
= vδTy ln δ +

Λ

T 2
.

0 = vδT ln δ +
Λ

T 2

Λ

T 2
= vδT ln δ−1

δTT 2 =
Λ

v ln δ−1


